题目列表(包括答案和解析)
对于不等式
<n+1(n∈N*),某同学用数学归纳法的证明过程如下:
(1)当n=1时,
<1+1,不等式成立.
(2)假设当n=k(k∈N*且k≥1)时,不等式成立,即
<k+1,则当n=k+1时,
=
<
=
=(k+1)+1,
所以当n=k+1时,不等式成立,则上述证法 ( ).
A.过程全部正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确
已知函数y=anx2(an≠0,n∈N*)的图像在x=1处的切线斜率为2an-1+1(n≥2,n∈N*),且当n=1时其图像过点(2,8),则a7的值为( )
A.
B.7
C.5 D.6
(1)当n=1时,
≤1+1,不等式成立.
(2)假设n=k时,不等式成立,即k2+k≤k+1时,
.
∴当n=k+1时不等式成立.
上述证法( )
A.过程全正确
B.n=1验证不正确
C.归纳假设不正确
D.从n=k到n=k+1推理不正确
设M1(0,0),M2(1,0),以M1为圆心,| M1 M2 | 为半径作圆交x轴于点M3 (不同于M2),记作⊙M1;以M2为圆心,| M2 M3 | 为半径作圆交x轴于点M4 (不同于M3),记作⊙M2;……;以Mn为圆心,| Mn Mn+1 | 为半径作圆交x轴于点Mn+2 (不同于Mn+1),记作⊙Mn;……当n∈N*时,过原点作倾斜角为30°的直线与⊙Mn交于An,Bn.考察下列论断:
当n=1时,
;Ks当n=2时,
;当n=3时,
;
当n=4时,
;当n=5时,
;……,
则推测一个一般的结论:对于n∈N*,
.
(1)当n=1时,
<1+1,不等式成立.
(2)假设当n=k(k∈N*)时,不等式成立,即
<k+1,则当n=k+1时,
<
,
∴当n=k+1时,不等式成立.
上述证法( )
A.过程全部正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com