题目列表(包括答案和解析)
| 线段s与线段s1的关系 | m、r的取值或表达式 |
| s所在直线平行于s1所在直线 | |
| s所在直线平分线段s1 |
(本小题满分12分)已知函数![]()
(I)若函数
在区间
上存在极值,求实数a的取值范围;
(II)当
时,不等式
恒成立,求实数k的取值范围.
(Ⅲ)求证:解:(1)
,其定义域为
,则
令
,
则
,
当
时,
;当
时,![]()
在(0,1)上单调递增,在
上单调递减,
即当
时,函数
取得极大值. (3分)
函数
在区间
上存在极值,
,解得
(4分)
(2)不等式
,即![]()
令![]()
(6分)
令
,则
,
,即
在
上单调递增, (7分)
,从而
,故
在
上单调递增, (7分)
(8分)
(3)由(2)知,当
时,
恒成立,即
,
令
,则
, (9分)
![]()
(10分)
以上各式相加得,
![]()
即
,
即
(12分)
。
(上海春卷22)已知
是实系数方程
的虚根,记它在直角坐标平面上的对应点为
.
(1)若
在直线
上,求证:
在圆
:
上;
(2)给定圆
:
(
,
),则存在唯一的线段
满足:①若
在圆
上,则
在线段
上;② 若
是线段
上一点(非端点),则
在圆
上. 写出线段
的表达式,并说明理由;
(3)由(2)知线段
与圆
之间确定了一种对应关系,通过这种对应关系的研究,填写表一(表中
是(1)中圆
的对应线段).
| 线段 |
|
|
| |
|
| |
| 线段 |
(上海春卷22)已知
是实系数方程
的虚根,记它在直角坐标平面上的对应点为
.
(1)若
在直线
上,求证:
在圆
:
上;
(2)给定圆
:
(
,
),则存在唯一的线段
满足:①若
在圆
上,则
在线段
上;② 若
是线段
上一点(非端点),则
在圆
上. 写出线段
的表达式,并说明理由;
(3)由(2)知线段
与圆
之间确定了一种对应关系,通过这种对应关系的研究,填写表一(表中
是(1)中圆
的对应线段).
| 线段 |
|
|
| |
|
| |
| 线段 |
(1)若
在直线
上,求证:
在圆
上;
(2)给定圆
,则存在唯一的线段
满足:①若
在圆
上,则
在线段
上;②若
是线段
上一点(非端点),则
在圆
上.写出线段
的表达式,并说明理由;
(3)由(2)知线段
与圆
之间确定了一种对应关系,通过这种对应关系的研究,填写表一(表中
是(1)中圆
的对应线段).
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com