函数的定义域是 , 查看更多

 

题目列表(包括答案和解析)

下列用图表给出的函数关系中,函数的定义域是(  )
x 0<x≤1 1<x≤5 5<x≤10 x>10
y 1 2 3 4

查看答案和解析>>

如果一个函数的定义域是值域的真子集,那么称这个函数为“思法”函数.
(1)判断指数函数、对数函数是否为思法函数,并简述理由;
(2)判断幂函数y=xα(α∈Q)是否为思法函数,并证明你的结论;
(3)已知ft(x)=ln(x2+2x+t)是思法函数,且不等式2t+1+3t+1≤k(2t+3t)对所有的ft(x)都成立,求实数k的取值范围.

查看答案和解析>>

某地西红柿上市时间仅能持续5个月,预测上市初期和后期会因供不应求使价格呈连续上涨势态,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:①f(x)=a•bx,②f(x)=ax2+bx+1,③f(x)=x(x-b)2+a,(以上三式中a,b均是不为零的常数,且b>1)
(1)为了准确研究其价格走势,应选择哪种价格模拟函数,为什么?
(2)若f(0)=4,f(2)=6,求出所选函数f(x)的解析式(注:函数的定义域是[0,5]).其中x=0表示8月1日,x=1表示9月1日,…,以此类推;为保证该地的经济收益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该西红柿将在哪几个月份内价格下跌.

查看答案和解析>>

1、求定义域时,应注意以下几种情况.
(1)如果f(x)是整式,那么函数的定义域是
R

(2)如果f(x)是分式,那么函数的定义域是使
分母不等于零
的实数的集合;
(3)如果f(x)为二次根式,那么函数的定义域是使
被开方数不小于零
的实数的集合;
(4)如果f(x)为某一数的零次幂,那么函数的定义域是使
底数不为零
的实数的集合.

查看答案和解析>>

已知函数y=x+
t
x
有如下性质:如果常数t>0,那么该函数在(0,
t
]上是减函数,在[
t
,+∞)上是增函数.
(1)若f(x)=x+
a
x
,函数在(0,a]上的最小值为4,求a的值;
(2)对于(1)中的函数在区间A上的值域是[4,5],求区间长度最大的A(注:区间长度=区间的右端点-区间的左断点);
(3)若(1)中函数的定义域是[2,+∞)解不等式f(a2-a)≥f(2a+4).

查看答案和解析>>

1、A  2,、B  3、 D  4,、B  5、 D  6、C   7、A  8、B  9、A  10、D

11、(,1]   12、-或1      13、6p     14、2    15、11

16解:解:(Ⅰ)

           

,即时,取得最大值.

(Ⅱ)当,即时,

所以函数的单调递增区间是

17、解:(Ⅰ)从15名教师中随机选出2名共种选法,   …………………………2分

所以这2人恰好是教不同版本的男教师的概率是.  …………………5分

(Ⅱ)由题意得

; 

的分布列为

0

1

2

 

 

所以,数学期望

18、解法一:(Ⅰ)证明:连接

文本框:        

   

                                      

     。  ……………………3分

∥平面 …………………………5分

(Ⅱ)解:在平面

……………………8分

所以,二面角的大小为。 ………………12分

19、(I)解:当

  ①当, 方程化为

  ②当, 方程化为1+2x = 0, 解得

  由①②得,

 (II)解:不妨设

 因为

  所以是单调递函数,    故上至多一个解,

 

20、解:(Ⅰ)由知,点的轨迹是以为焦点的双曲线右支,由,∴,故轨迹E的方程为…(3分)

(Ⅱ)当直线l的斜率存在时,设直线l方程为,与双曲线方程联立消,设

(i)∵

……………………(7分)

    假设存在实数,使得

    故得对任意的恒成立,

    ∴,解得 ∴当时,.

    当直线l的斜率不存在时,由知结论也成立,

    综上,存在,使得.

   (ii)∵,∴直线是双曲线的右准线,

    由双曲线定义得:

    方法一:∴

    ∵,∴,∴

    注意到直线的斜率不存在时,,综上,

    方法二:设直线的倾斜角为,由于直线

与双曲线右支有二个交点,∴,过

,垂足为,则

    由,得故:

21 解:(Ⅰ)

时,

,即是等比数列. ∴; 

(Ⅱ)由(Ⅰ)知,,若为等比数列,

 则有

,解得

再将代入得成立, 所以.  

(III)证明:由(Ⅱ)知,所以

,   由

所以,   

从而

.