已知(x-+1)(x-2)=0,求(-)÷的值. 查看更多

 

题目列表(包括答案和解析)

(11·珠海)(本题满分9分)已知:如图,锐角△ABC内接于⊙O,∠ABC=45°;

D上一点,过点D的切线DEAC的延长线于点E,且DEBC;连结ADBD

BEAD的垂线AFDC的延长线交于点F

(1)求证:△ABD∽△ADE

(2)记△DAF、△BAE的面积分别为SDAFSBAE,求证:SDAFSBAE

 

查看答案和解析>>

(本题满分12分)

已知:⊙O的直径AB=8,⊙B与⊙O相交于点C、D,⊙O的直径CF与⊙B相交于点E,设⊙B的半径为OE的长为

1.(1)如图,当点E在线段OC上时,求关于的函数解析式,并写出定义域;

2.(2)当点E在直径CF上时,如果OE的长为3,求公共弦CD的长;

3.(3)设⊙BAB相交于G,试问△OEG能否为等腰三角形?如果能够,请直接写出BC弧的长度(不必写过程);如果不能,请简要说明理由

 

查看答案和解析>>

(本题满分6分)已知在平面直角坐标系中的位置如图10所示.

(1)分别写出图中点的坐标;

(2)画出绕点按顺时针方向旋转

(3)求点旋转到点所经过的路线长(结果保留).

 

 

 

查看答案和解析>>

(本题满分10分)

已知:线段a,b,c。

求作:△ABC,使它的三边BC,CA,AB分别等于线段a,b,c。(要求写作法,并保留作图痕迹)

 

查看答案和解析>>

(本题满分10分)已知关于x的方程
【小题1】(1)k取何值时,方程有两个不相等的实数根;
【小题2】(2)在(1)的条件下,请你取一个自已喜爱的k值,并求出此时方程的解.

查看答案和解析>>

1. C   2. B   3.D   4.B  5.D   6.C  7. C   8. C   9.D   10.A 

11.4

12.y=2(x+3)2-7

13.

14.3

15.153

16.9800

17.解:原式=                     ………    2分

∵x≠0且x≠且x≠2                                      ………  3分

∴x=-1                                                 …………… 4分

∴原式==-                                  ………… 5分

18.(1)答案不惟一,例如四个图案具有的共同特征可以是:①都是轴对称图形;②面积都等于四个小正方形的面积之和;③都是直线形图案。。。。。只要写出两个即可。…… 3分

(2)答案示例:


……  6分

19.已知:如图所示,AD为ΔABC的中线,且CF⊥AD于F,BE⊥AD的延长线于E.

求证;BE=CF.

证明:∵AD为ΔABC的中线。                                

∴BD=CD.              ………  1分

∵BE⊥AD,CF⊥AD.

∴∠BED=∠CFD=90º .  ………  3分

又∠1=∠2.

∴ΔBED≌ΔCFD(AAS).     ……… 5分

BE=CF                  ……… 7分

(本题还可以作AN⊥BC于N,利用等底等高的两个三角形的面积相等的性质证明)

20.(1)A品牌牙膏主要竞争优势是质量,①对A品牌牙膏的质量满意的最多;②对A品牌牙膏的广告,价格满意的不是最多;③对A品牌牙膏购买的人最多 

∴ A品牌牙膏靠的是质量优势     ……………2分

(2)广告对用户选择品牌有影响,原因是:①对B,C牙膏的质量,价格满意的用户,相差不大;②对B品牌的广告,满意的用户比C多,相差较大;③购买B品牌的用户高于C.

   ∴广告影响用户选择品牌 。    ………………………………….      5分

(3)首先要提高质量,其次加大广告力度,最后注意合理的价格。……………      8分

21.(1)34.5元                    ………………………      2分

(2)35.5元,28.5元             ………………………     4分

(3)1331.25元                   ………………………     8分

22.羊可以吃到的草的最大面积由三部分组成:第一部分:以点A为圆心,12米为半径。圆心角为60°的扇形的面积减去三角形ABC的面积;第二部分:以点B为圆心,6米为半径,圆心角为60°的扇形面积;第三部分与第二部分相等。  ………………    3分

因此,羊可以吃到的草的面积是:

(平方米)    ……………  8分

23.解;根据题意易知,水柱上任意一个点距中心的水平距离为x,与此点的

高度y之间的函数关系式是:      ...............          1分

Y=a1(x+4)2+6 (-10≤x<0 )或 y=a2(x+4)2+6 (0≤x≤10).....   3分

由x=-10,y=0, 可得a1=-; 由x=10, y=0, 可得a2=-  .....   5分 

于是,所求函数解析式是 Y=-(x+4)2+6 (-10≤x<0 )

y=-(x+4)2+6(0≤x≤10)     ………  6分

    当x=0时,y=             

    所以装饰物的高度为m   ………  8分

24.(1)连接O,D与B,D两点。

∵ΔBDC是RtΔ, 且E为BC中点。

∴∠EDB=∠EBD.         ………    2分

又∵OD=OB  且∠EBD+∠DBO=90°       

∴∠EDB+∠ODB=90°

∴DE是⊙O的切线;       ……    4分

(2)∵∠EDO=∠B=90°,

若要AOED是平行四边形,则DE∥AB,D为AC中点。

又∵BD⊥AC,

∴ΔABC为等腰直角三角形。

∴∠CAB=45°.         ……     6分    

过E作EH⊥AC于H.

设BC=2k,

则EH=  ………  8分

∴sin∠CAE=    ……  10分

25.(1) ?i    1                       …2分.

(2)①5   ②3+4i                    …4分

(3)已知(x+y)+3i=1-(x+y)i

可得(x+y)+3i=(1-x)-yi         …5分

∴x+y=1-x, 3=-y                  …6分

∴x=2   y=-3                     …   8分

(4)解原式:=    …   12分

 


同步练习册答案