为确保信息安全.信息需要加密传输.发送方由明文密文.接收方由密文明文.已知加密规则为:明文对应的密文.例如明文1.2.3对应的密文2.8.18.如果接收方收到密文7.18.15.则解密得到的明文为( ) 查看更多

 

题目列表(包括答案和解析)

7、为确保信息安全,信息需要加密传输,发送方由明文?密文(加密),接收方由密文?明文(解密).已知加密规则为:明文a,b,c对应的密文a+1,2b+4,3c+9.例如明文1,2,3对应的密文2,8,18.如果接收方收到密文7,18,15,则解密得到的明文为(  )

查看答案和解析>>

16、为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文?明文(解密).已知加密规则为:明文a,b,c对应的密文a+1,2b+4,3c+9.例如明文1,2,3对应的密文2,8,18.如果接收方收到密文7,18,15,则解密得到的明文为
6、7、2

查看答案和解析>>

为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).已知加密规则为:明文a,b,c对应的密文a-1,2b+1,3c-2.如果对方收到的密文为2,9,13,那么解密后得到的明文为
3,4,5
3,4,5

查看答案和解析>>

为确保信息安全,信息需要加密传输,发送方由“明文
加密
密文”,接收方由“密文
解密
明文”.已知加密规则为:当明文a≥1时,a对应的密文为a2-2a+1;当明文a<1时,a对应的密文为-a2+2a-1.例如:明文2对应的密文是 22-2×2+1=1;明文-1对应的密文是-(-1)2+2×(-1)-1=-4.如果接收方收到的密文为4和-16,则对应的明文分别是
3
3
-3
-3

查看答案和解析>>

(2008•黔南州)为确保信息安全,信息需要加密传输,发送方将明文加密传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为:明文a,b对应的密文为a-2b,2a+b,例如1,2对应的密文是-3,4,当接收方收到的密文是1,7时,解密得到的明文是(  )

查看答案和解析>>

一、选择题

1. C   2. A   3.B   4.C   5.B  6.C   7.D   8.D   9.C   10.B

二、填空题

11.      12.    13.30º   14. 0.18;

15. -7   16. (1);   (2)50。

三、解答题

17.

            


18

 

19.解:(1),同理

(2)若平分,四边形是菱形.

证明:     四边形是平行四边形,

平行四边形为菱形

 

20.解:(1)(每图2分)………………………………………………………………4分

(2)0.12,36°;10,90°;(每空0.5分)…………………………………………………6分

(3)当旋钮开到36°附近时最省气,当旋钮开到90°时最省时.最省时和最省气不可能同时做到.………………………………………………………………………………………8分

说明:第(3)问只要表达意思明确即可,方式和文字不一定如此表达.


注:最省气的旋钮位置在36°附近,接近0°~90°的黄金分割点0.382(=0.4).

21.

22.解:(2).???????????????????????????????????????????????????????????????????????????????????????????? 2分

(3)如图③,当时,设于点,连结

,????????????????????????????? 3分

,???????????????????????????? 4分

,???????????????????????????? 5分

.?????????????????????????????????? 6分

(4).????????????????????????????????????????????????????????????????????????????????????????????????? 8分

23.证明:(1),

        (2分)

             (3分)

(2)连结(1分)     (4分)

               

                (5分)

                (6分)

             (7分)

               (8分)

 

24.解:(1)依题可得BP=t,CQ=2t,PC=t-2.                 ……………1分

  ∵EC∥AB,∴△PCE∽△PAB,

 ∴EC=.                                             ……………3分

 QE=QC-EC=2t-.                  ……………4分

 作PF⊥,垂足为F. 则PF=PB?sin60°=t               ……………5分

 ∴S=QE?PF=??t=(t2-2t+4)(t>2).  ……6分

(2)此时,C为PB中点,则t-2=2,∴=4.                    ……………8分

 ∴QE==6(厘米).         ……………10分

25.(1)∵点A的坐标为(0,16),且AB∥x轴

∴B点纵坐标为16,且B点在抛物线

∴点B的坐标为(10,16)...............................1分

又∵点D、C在抛物线上,且CD∥x轴

∴D、C两点关于y轴对称

∴DN=CN=5...............................2分

∴D点的坐标为(-5,4)...............................3分

(2)设E点的坐标为(a,16),则直线OE的解析式为:..........................4分

∴F点的坐标为()..............................5分

由AE=a,DF=,得

..............................7分

解得a=5..............................8分

(3)连结PH,PM,PK

∵⊙P是△AND的内切圆,H,M,K为切点

∴PH⊥AD  PM⊥DN  PK⊥AN..............................9分

在Rt△AND中,由DN=5,AN=12,得AD=13

设⊙P的半径为r,则 

所以 r=2.............................11分

在正方形PMNK中,PM=MN=2

在Rt△PMF中,tan∠PFM=.............................12分

 


同步练习册答案