(1)如图①.当时. 查看更多

 

题目列表(包括答案和解析)

如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.

(1)如图①,当时,求的值;

(2)如图②当DE平分∠CDB时,求证:AF=OA;

(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.

 

查看答案和解析>>

在直角坐标系xOy中,抛物线y=x2-2tx+t2-t(t>0)与x轴的两个交点分别为A、B(A在B的左边),直线l:y=kx经过抛物线的顶点C,与抛物线的另一个交点为D.
(1)求抛物线的顶点C的坐标(用含t的代数表示),并求出直线l 的解析式;
(2)如图①,当数学公式时,探究AC与BD的位置关系,并说明理由;
(3)当t≠1时,设△ABC的面积为S1,△ABD的面积为S2,用含t的代数式表示数学公式的值.

查看答案和解析>>

 已知:在中,,点边的中点,点上,连结并延长到点,使,点在线段上,且

1.(1)如图,当时,求证:

2.(2)如图,当时,则线段之间的数量关系为      

3.(3)在(2)的条件下,延长,使,连接,若,求的值.

 

查看答案和解析>>

已知一个矩形纸片,将该纸片放置在平面直角坐标系中,点,点,点边上的动点(点不与点重合),经过点折叠该纸片,得点和折痕.设

(1)如图①,当时,求点的坐标;

(2)如图②,经过点再次折叠纸片,使点落在直线上,得点和折痕,若,试用含有的式子表示

(3)在(2)的条件下,当点恰好落在边上时,求点的坐标(直接写出结果即可).

 

查看答案和解析>>

已知:在中,,点边的中点,点上,连结并延长到点,使,点在线段上,且

【小题1】(1)如图,当时,求证:
【小题2】(2)如图,当时,则线段之间的数量关系为      

【小题3】(3)在(2)的条件下,延长,使,连接,若,求的值.

查看答案和解析>>

一、选择题

1. C   2. A   3.B   4.C   5.B  6.C   7.D   8.D   9.C   10.B

二、填空题

11.      12.    13.30º   14. 0.18;

15. -7   16. (1);   (2)50。

三、解答题

17.

            


18

 

19.解:(1),同理

(2)若平分,四边形是菱形.

证明:     四边形是平行四边形,

平行四边形为菱形

 

20.解:(1)(每图2分)………………………………………………………………4分

(2)0.12,36°;10,90°;(每空0.5分)…………………………………………………6分

(3)当旋钮开到36°附近时最省气,当旋钮开到90°时最省时.最省时和最省气不可能同时做到.………………………………………………………………………………………8分

说明:第(3)问只要表达意思明确即可,方式和文字不一定如此表达.


注:最省气的旋钮位置在36°附近,接近0°~90°的黄金分割点0.382(=0.4).

21.

22.解:(2).???????????????????????????????????????????????????????????????????????????????????????????? 2分

(3)如图③,当时,设于点,连结

,????????????????????????????? 3分

,???????????????????????????? 4分

,???????????????????????????? 5分

.?????????????????????????????????? 6分

(4).????????????????????????????????????????????????????????????????????????????????????????????????? 8分

23.证明:(1),

        (2分)

             (3分)

(2)连结(1分)     (4分)

               

                (5分)

                (6分)

             (7分)

               (8分)

 

24.解:(1)依题可得BP=t,CQ=2t,PC=t-2.                 ……………1分

  ∵EC∥AB,∴△PCE∽△PAB,

 ∴EC=.                                             ……………3分

 QE=QC-EC=2t-.                  ……………4分

 作PF⊥,垂足为F. 则PF=PB?sin60°=t               ……………5分

 ∴S=QE?PF=??t=(t2-2t+4)(t>2).  ……6分

(2)此时,C为PB中点,则t-2=2,∴=4.                    ……………8分

 ∴QE==6(厘米).         ……………10分

25.(1)∵点A的坐标为(0,16),且AB∥x轴

∴B点纵坐标为16,且B点在抛物线

∴点B的坐标为(10,16)...............................1分

又∵点D、C在抛物线上,且CD∥x轴

∴D、C两点关于y轴对称

∴DN=CN=5...............................2分

∴D点的坐标为(-5,4)...............................3分

(2)设E点的坐标为(a,16),则直线OE的解析式为:..........................4分

∴F点的坐标为()..............................5分

由AE=a,DF=,得

..............................7分

解得a=5..............................8分

(3)连结PH,PM,PK

∵⊙P是△AND的内切圆,H,M,K为切点

∴PH⊥AD  PM⊥DN  PK⊥AN..............................9分

在Rt△AND中,由DN=5,AN=12,得AD=13

设⊙P的半径为r,则 

所以 r=2.............................11分

在正方形PMNK中,PM=MN=2

在Rt△PMF中,tan∠PFM=.............................12分

 


同步练习册答案