23.如图8.已知⊙的弦垂直于直径,垂足为.连接.. 查看更多

 

题目列表(包括答案和解析)

如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙O于点E,连接AE.
(1)求证:AE是⊙O的直径;
(2)如图2,连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留π与根号)
精英家教网

查看答案和解析>>

精英家教网如图,若已知△ABC中,D、E分别为AB、AC的中点,则可得DE∥BC,且DE=
12
BC.根据上面的结论:
(1)你能否说出顺次连接任意四边形各边中点,可得到一个什么特殊四边形并说明理由;
(2)如果将(1)中的“任意四边形”改为条件是“平行四边形”或“菱形”或“矩形”或“等腰梯形”,那么它们的结论又分别怎样呢?请说明理由.

查看答案和解析>>

(2012•历下区二模)(1)已知:如图1,已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.求证:DE=DF.
(2)如图2,已知△ABC内接于⊙O,AC是⊙O的直径,D是
AB
的中点,过点D作直线BC的垂线,分别交CB,CA的延长线于E,F,求证:EF是⊙O的切线.

查看答案和解析>>

如图1,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是(  )
精英家教网
A、n
B、2n-1
C、
n(n+1)
2
D、3(n+1)

查看答案和解析>>

如图,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是
(n+1)n
2
(n+1)n
2

查看答案和解析>>

一、选择题

1. C   2. A   3.B   4.C   5.B  6.C   7.D   8.D   9.C   10.B

二、填空题

11.      12.    13.30º   14. 0.18;

15. -7   16. (1);   (2)50。

三、解答题

17.

            


18

 

19.解:(1),同理

(2)若平分,四边形是菱形.

证明:     四边形是平行四边形,

平行四边形为菱形

 

20.解:(1)(每图2分)………………………………………………………………4分

(2)0.12,36°;10,90°;(每空0.5分)…………………………………………………6分

(3)当旋钮开到36°附近时最省气,当旋钮开到90°时最省时.最省时和最省气不可能同时做到.………………………………………………………………………………………8分

说明:第(3)问只要表达意思明确即可,方式和文字不一定如此表达.


注:最省气的旋钮位置在36°附近,接近0°~90°的黄金分割点0.382(=0.4).

21.

22.解:(2).???????????????????????????????????????????????????????????????????????????????????????????? 2分

(3)如图③,当时,设于点,连结

,????????????????????????????? 3分

,???????????????????????????? 4分

,???????????????????????????? 5分

.?????????????????????????????????? 6分

(4).????????????????????????????????????????????????????????????????????????????????????????????????? 8分

23.证明:(1),

        (2分)

             (3分)

(2)连结(1分)     (4分)

               

                (5分)

                (6分)

             (7分)

               (8分)

 

24.解:(1)依题可得BP=t,CQ=2t,PC=t-2.                 ……………1分

  ∵EC∥AB,∴△PCE∽△PAB,

 ∴EC=.                                             ……………3分

 QE=QC-EC=2t-.                  ……………4分

 作PF⊥,垂足为F. 则PF=PB?sin60°=t               ……………5分

 ∴S=QE?PF=??t=(t2-2t+4)(t>2).  ……6分

(2)此时,C为PB中点,则t-2=2,∴=4.                    ……………8分

 ∴QE==6(厘米).         ……………10分

25.(1)∵点A的坐标为(0,16),且AB∥x轴

∴B点纵坐标为16,且B点在抛物线

∴点B的坐标为(10,16)...............................1分

又∵点D、C在抛物线上,且CD∥x轴

∴D、C两点关于y轴对称

∴DN=CN=5...............................2分

∴D点的坐标为(-5,4)...............................3分

(2)设E点的坐标为(a,16),则直线OE的解析式为:..........................4分

∴F点的坐标为()..............................5分

由AE=a,DF=,得

..............................7分

解得a=5..............................8分

(3)连结PH,PM,PK

∵⊙P是△AND的内切圆,H,M,K为切点

∴PH⊥AD  PM⊥DN  PK⊥AN..............................9分

在Rt△AND中,由DN=5,AN=12,得AD=13

设⊙P的半径为r,则 

所以 r=2.............................11分

在正方形PMNK中,PM=MN=2

在Rt△PMF中,tan∠PFM=.............................12分

 


同步练习册答案