A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

某工厂有工人1000名,其中250名工人参加过短期培训(称为A类工人)另外750名工人参加过长期培训(称为B类工人).现用分层抽样的方法(按A类、B类分两层)从该工厂的工人中抽取100名工人,调查他们的生产能力(此处生产能力指一天加工的零件数).从A类工人中的抽查结果和从B类工人中的抽查结果如下表1和表2.
表1
生产能力分组 [110,120) [120,130) [130,140) [140,150)
人数 8 x 3 2
表2
生产能力分组 [110,120) [120,130) [130,140) [140,150)
人数 6 y 27 18
(Ⅰ)先确定x、y的值,再补齐下列频率分布直方图.

(Ⅱ)完成下面2×2列联表,并回答能否有99.9%的把握认为“工人的生产能力与工人的类别有关”?
生产能力分组 [110,130) [130,150) 合计
A类工人
B类工人
合计
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

P(K2≥k) 0,05 0.025 0.01 0.005
k 3.841 5.024 6.635 7.879

查看答案和解析>>

如图,在正方体ABCD-A′B′C′D′中,直线A′B和直线AC、CC′、C′A所成的角的大小分别是α、β、γ,则α、β、γ的大小关系是(  )

查看答案和解析>>

(2012•武昌区模拟)通过随机询问110名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如下的列联表:
总计
走天桥 40 20 60
走斑马线 20 30 50
总计 60 50 110
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,算得K2=
110×(40×30-20×20)2
60×50×60×50
≈7.8

参照独立性检验附表,得到的正确结论是(  )

查看答案和解析>>

设向量
a
=(1,cos2θ),
b
=(2,1),
c
=(4sinθ,1),
d
=(
1
2
sinθ,1).
(1)若θ∈(0,
π
4
),求
a
b
-
c
d
的取值范围;
(2)若θ∈[0,π),函数f(x)=|x-1|,比较f(
a
b
)与f(
c
d
)的大小.

查看答案和解析>>

“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:
男性 女性 合计
反感 10
不反感 8
合计 30
已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是
8
15

(Ⅰ)请将上面的列表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料分析反感“中国式过马路”与性别是否有关?(x2=
(a+b+c+d)(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,当Χ2<2.706时,没有充分的证据判定变量性别有关,当Χ2>2.706时,有90%的把握判定变量性别有关,当Χ2>3.841时,有95%的把握判定变量性别有关,当Χ2>6.635时,有99%的把握判定变量性别有关)
(Ⅱ)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X,求X的分布列和数学期望.

查看答案和解析>>

一、选择题:  B C A D B       C A B D C

二、填空题:

  11、       12、      13、  

14、      15、②③

三、解答题:

16.解:(1)    ……………………………1分

=

==      …………………………………………4分 

∵θ∈[π,2π],∴

≤1      则 max=2. ………………………………………………6分                                             

(2)  由已知,得     …………………………………8分            

        ……………………10分  

∵θ∈[π,2π]∴,∴. …………………12分

17.解:依题意知:.……4分

   (1)对于

是奇函数……………………………………….……6分

   (2)时,单调递减,

时,单调递增………………………………………….…8分

……….…………..…10分

………….……12分

18.解:(1)当

                    ………………2分

,..............................................5分

        ................6分

定义域为     .................................7分

   (2)对于,             

显然当(元),    ..................................9分

∴当每辆自行车的日租金定在11元时,才能使一日的净收入最多。..........12分

 

19.解:(1)由题意               …………………………2分

时,取得极值,  所以

                即      …………………4分

           此时当时,,当时,

             是函数的最小值。          ………………………6分

       (2)设,则  ……8分

            设

            ,令解得

       列表如下:

 

 

__

0

+

 

 

 

 

 

 

 

 

函数上是增函数,在上是减函数。

时,有极大值;当时,有极小值……10分

函数的图象有两个公共点,函数的图象有两个公共点

     或             ……12分

 

20.解:(1)

.令,则.…………2分

时,,则数列不是等比数列. 

时,数列不是等比数列.………………… 5分

时,,则数列是等比数列,且公比为2. 

,即.解得.……7分

(2)由(Ⅰ)知,当时,, 

,   ………………………①

, …………②

由①-②:

               

,    ………………………………..………11分

.      …………………..………13分

 

21.解:(1)∵成等比数列 ∴ 是椭圆上任意一点,依椭圆的定义得

为所求的椭圆方程.         ……………………5分     

(2)假设存在,因与直线相交,不可能垂直轴   …………………6分

 因此可设的方程为:

  ①     ……………………8分

方程①有两个不等的实数根

 ②        ………10分

设两个交点的坐标分别为 ∴

∵线段恰被直线平分 ∴

 ∴ ③ 把③代入②得

  ∴ ∴解得    ………13分

∴直线的倾斜角范围为                 …………………14分

 


同步练习册答案