(Ⅱ)记.求数列的前项和为. 查看更多

 

题目列表(包括答案和解析)

已知函数,点在函数的图象上,

在函数的图象上,设

(1)求数列的通项公式;

(2)记,求数列的前项和为

(3)已知,记数列的前项和为,数列的前项和为,试比较的大小.

 

查看答案和解析>>

(本小题满分14分)设数列满足  。数列满足是非零整数,且对任意的正整数和自然数,都有

(1)求数列的通项公式;

(2)记,求数列的前项和

查看答案和解析>>

(本小题满分12分)

已知等差数列的公差大于0,且是方程的两根,数列的前n项的和为,且

   (Ⅰ) 求数列的通项公式

(Ⅱ)记,求数列的前项和

 

查看答案和解析>>

在等差数列中,,前项和满足条件.

(Ⅰ)求数列的通项公式;

(Ⅱ)记,求数列的前项和.

 

查看答案和解析>>

若数列满足,则称数列平方递推数列.已知数列,点在函数的图象上,其中为正整数.

1)证明数列平方递推数列,且数列为等比数列;

2设(1)中平方递推数列的前项积为

,求

3)在(2)的条件下,记,求数列的前项和,并求使的最小值

 

查看答案和解析>>

2009.4

 

1-10.CDABB   CDBDA

11.       12. 4        13.        14.       15.  

16.   17.

18.解:(Ⅰ)由题意,有

.…………………………5分

,得

∴函数的单调增区间为 .……………… 7分

(Ⅱ)由,得

.           ……………………………………………… 10分

,∴.      ……………………………………………… 14分

19.解:(Ⅰ)设数列的公比为,由.             …………………………………………………………… 4分

∴数列的通项公式为.      ………………………………… 6分

(Ⅱ) ∵,    ,      ①

.      ②         

①-②得: …………………12分

             得,                           …………………14分

20.解:(I)取中点,连接.

分别是梯形的中位线

,又

∴面,又

.……………………… 7分

(II)由三视图知,是等腰直角三角形,

     连接

     在面AC1上的射影就是,∴

    

∴当的中点时,与平面所成的角

  是.           ………………………………14分

                                               

21.解:(Ⅰ)由题意:.

为点M的轨迹方程.     ………………………………………… 4分

(Ⅱ)由题易知直线l1l2的斜率都存在,且不为0,不妨设,MN方程为 联立得:,设6ec8aac122bd4f6e

    ∴由抛物线定义知:|MN|=|MF|+|NF|…………7分

       同理RQ的方程为,求得.  ………………………… 9分

.  ……………………………… 13分

当且仅当时取“=”,故四边形MRNQ的面积的最小值为32.………… 15分

22. 解:(Ⅰ),由题意得

所以                    ………………………………………………… 4分

(Ⅱ)证明:令

得:……………………………………………… 7分

(1)当时,,在,即上单调递增,此时.

          …………………………………………………………… 10分

(2)当时,,在,在,在,即上单调递增,在上单调递减,在上单调递增,或者,此时只要或者即可,得

.                        …………………………………………14分

由 (1) 、(2)得 .

∴综上所述,对于,使得成立. ………………15分