题目列表(包括答案和解析)
已知
是等差数列,
是公比为
的等比数列,
,记
为数列
的前
项和,
(1)若
是大于
的正整数
,求证:
;
(2)若
是某一正整数
,求证:
是整数,且数列
中每一项都是数列
中的项;
(3)是否存在这样的正数
,使等比数列
中有三项成等差数列?若存在,写出一个
的值,并加以说明;若不存在,请说明理由;
已知
是等差数列,其中
,前四项和
.
(1)求数列
的通项公式an;
(2)令
,①求数列
的前
项之和![]()
②
是不是数列
中的项,如果是,求出它是第几项;如果不是,请说明理由。
已知
是等差数列,
是公比为
的等比数列,
,记
为数列
的前
项和,
(1)若
是大于
的正整数
,求证:
;
(2)若
是某一正整数
,求证:
是整数,且数列
中每一项都是数列
中的项;
(3)是否存在这样的正数
,使等比数列
中有三项成等差数列?若存在,写出一个
的值,并加以说明;若不存在,请说明理由;
已知
是等差数列,
是公比为q的等比数列,
,记
为数列
的前n项和。
(1)若
(
是大于2的正整数)。求证:
;
(2)若
(i是某个正整数,求证:q是整数,且数列
中的每一项都是数列
中的项。
(3)是否存在这样的正数q,使等比数列
中有三项成等差数列?若存在,写出一个q的值,并加以说明,若不存在,请说明理由。
已知
是等差数列,其前n项和为Sn,
是等比数列,且
,
.
(Ⅰ)求数列
与
的通项公式;
(Ⅱ)记
,
,证明
(
).
【解析】(1)设等差数列
的公差为d,等比数列
的公比为q.
由
,得
,
,
.
由条件,得方程组
,解得![]()
所以
,
,
.
(2)证明:(方法一)
由(1)得
①
②
由②-①得
![]()
![]()
![]()
而![]()
故
,![]()
(方法二:数学归纳法)
① 当n=1时,
,
,故等式成立.
② 假设当n=k时等式成立,即
,则当n=k+1时,有:
![]()
![]()
![]()
![]()
![]()
![]()
即
,因此n=k+1时等式也成立
由①和②,可知对任意
,
成立.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com