题目列表(包括答案和解析)
异面直线a、b互相垂直,它们都与平面α相交,若直线a与平面α所成的角为
,则直线b与平面α所成角的大小
[ ]
A.一定是![]()
B.最大是![]()
C.最小是![]()
D.可以是
到
范围内的任意角
已知异面直线l1和l2,l1⊥l2,MN是l1和l2的公垂线,MN = 4,A∈l1,B∈l2,AM = BN = 2,O是MN中点.① 求l1与OB的成角.②求A点到OB距离.
EF是异面直线A.b的公垂线,直线l∥EF,则l与A.b交点的个数为
A.0 B.1 C.0或1 D.0,1或2
已知异面直线
l1和l2,l1⊥l2,MN是l1和l2的公垂线,MN=4,A∈l1,B∈l2,AM=BN=2,O是MN中点.①求
l1与OB的成角.②求
A点到OB距离.一、选择题:
题号
1
2
3
4
5
6
7
8
9
10
答案










二、填空题:
11.
; 12.
;
13.
;
14.
;
15.
; 16. ③ ④ .
三、解答题:
17.解:(1)在
中,由
,得
, 又由正弦定理:
得:
.
……………………4分
(2)由余弦定理:
得:
,
即
,解得
或
(舍去),所以
.
……8分
所以,


即
.
…………………12分
18.解:(1)依题意,双曲线
的方程可设为:
、
,
则
解之得:
,
所以双曲线
的方程为:
.
……………………6分
(2)设
、
,直线
与
轴交于
点,此点即为双曲线
的右焦点,由
消去
,得
,
此方程的
且
,
,
所以
、
两点分别在左、右支上,不妨设
在左支、
在右支上 ………9分
则由第二定义知:
,
, …………11分
所以


,即
. ………14分
(亦可求出
、
的坐标,用两点间距离公式求.)
19.(1)当点
为
的中点时,
与平面
平行.
∵在
中,
、
分别为
、
的中点
∴
∥
又
平面
,而
平面
∴
∥平面
.
……………………4分
(2)证明(略证):易证
平面
,又
是
在平面
内的射影,
,∴
.
……………………8分
(3)∵
与平面
所成的角是
,∴
,
,
.
过
作
于
,连
,则
. …………………10分
易知:
,
,设
,则
,
,
在
中,
,
得
.
………14分
解法二:(向量法)(1)同解法一
(2)建立图示空间直角坐标系,则
,
,
,
.
设
,则

∴
(本小题4分)
(3)设平面
的法向量为
,由
,
得:
,
依题意
,∴
,
得
.
(本小题6分)
20.解:(1)
,
∴可设
,
因而
①
由
得
②
∵方程②有两个相等的根,
∴
,即
解得
或
由于
,
(舍去),将
代入 ① 得
的解析式
.
…………………6分
(2)
=
,
∵
在区间
内单调递减,
∴
在
上的函数值非正,
由于
,对称轴
,故只需
,注意到
,∴
,得
或
(舍去)
故所求a的取值范围是
.
…………………11分
(3)
时,方程
仅有一个实数根,即证方程
仅有一个实数根.令
,由
,得
,
,易知
在
,
上递增,在
上递减,
的极大值
,
的极小值
,故函数
的图像与
轴仅有一个交点,∴
时,方程
仅有一个实数根,得证.
……………………16分
21.解:(1)
, ……………………1分
=
.
……………………4分
(2)
,
……………………5分

,………7分
∴数列
是
为首项,
为公比的等比数列. ……………………8分
(3)由(2)知
, Sn =
, ……………9分
=
∵0<
<1,∴
>0,
,0<
<1,
,
∴
,
……………………11分
又当
时,
,∴
, ……………………13分
∴
<
.……14分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com