题目列表(包括答案和解析)
已知
,函数![]()
(1)当
时,求函数
在点(1,
)的切线方程;
(2)求函数
在[-1,1]的极值;
(3)若在
上至少存在一个实数x0,使
>g(xo)成立,求正实数
的取值范围。
【解析】本试题中导数在研究函数中的运用。(1)中
,那么当
时,
又
所以函数
在点(1,
)的切线方程为
;(2)中令
有 ![]()
![]()
对a分类讨论
,和
得到极值。(3)中,设
,
,依题意,只需
那么可以解得。
解:(Ⅰ)∵
∴ ![]()
∴ 当
时,
又
∴ 函数
在点(1,
)的切线方程为
--------4分
(Ⅱ)令
有 ![]()
![]()
①
当
即
时
|
|
(-1,0) |
0 |
(0, |
|
( |
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
极大值 |
|
极小值 |
|
故
的极大值是
,极小值是![]()
②
当
即
时,
在(-1,0)上递增,在(0,1)上递减,则
的极大值为
,无极小值。
综上所述
时,极大值为
,无极小值
时 极大值是
,极小值是
----------8分
(Ⅲ)设
,![]()
对
求导,得![]()
∵
,
![]()
∴
在区间
上为增函数,则![]()
依题意,只需
,即
解得
或
(舍去)
则正实数
的取值范围是(![]()
,
)
已知函数
,
(Ⅰ)求函数
的单调递减区间;
(Ⅱ)令函数
(
),求函数
的最大值的表达式
;
【解析】第一问中利用令
,
,
∴
,![]()
第二问中,
=![]()
=![]()
=
令
,
,则
借助于二次函数分类讨论得到最值。
(Ⅰ)解:令
,
,
∴
,![]()
∴
的单调递减区间为:![]()
…………………4分
(Ⅱ)解:
=![]()
=![]()
=![]()
令
,
,则
……………………4分
对称轴![]()
① 当
即
时,
=
……………1分
② 当
即
时,
=
……………1分
③ 当
即
时,
……………1分
综上:![]()
已知
中,内角
的对边的边长分别为
,且![]()
(I)求角
的大小;
(II)若
求
的最小值.
【解析】第一问,由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,![]()
第二问,![]()
三角函数的性质运用。
解:(Ⅰ)由正弦定理可得:sinBcosC=2sinAcosB-sinCcosB,即sin(B+C)=2sinAcosB,
(Ⅱ)由(Ⅰ)可知
,
,则当
,即
时,y的最小值为
.
已知函数
(其中
)的图象与x轴的交点中,相邻两个交点之间的距离为
,且图象上一个最低点为
.
(1)求
的解析式; (2)当
,求
的值域.
【解析】第一问利用三角函数的性质得到)由最低点为
得A=2. 由x轴上相邻的两个交点之间的距离为
得
=
,即
,
由点
在图像上的![]()
![]()
第二问中,![]()
![]()
当
=
,即
时,
取得最大值2;当![]()
即
时,
取得最小值-1,故
的值域为[-1,2]
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com