1.已知集合M={直线}.集合N={双曲线}.则集合M与N交集中的元素个数为 ( )A. 0 B. 1 C. 2 D.不能确定 查看更多

 

题目列表(包括答案和解析)

已知矩阵M=
1
0
0
-1
,N=
1
0
2
-3
,求直线y=2x+1在矩阵MN对应变换的作用下所得到的直线方程.

查看答案和解析>>

已知矩阵M=
10
0-1
,N=
12
0-3
,求直线y=2x+1在矩阵MN的作用下变换所得到的直线方程.

查看答案和解析>>

已知点M(a,b)与N关于x轴对称,点P与点N关于y轴对称,点Q与点P关于直线x+y=0对称,则点Q的坐标为(    )

A.(a,b)            B.(b,a)            C.(-a,-b)              D.(-b,-a)

查看答案和解析>>

已知两点M(-5,0)和N(5,0),若直线上存在点P使?|PM|?-|PN|=6,则称该直线为“B型直线”.给出下列直线:①y=x+1;②y=2;③y=x;④y=2x+1.其中为“B型直线”的是______________(填上所有正确的序号).

查看答案和解析>>

(08年丰台区统一练习一理)(13分)

 在平面直角坐标系xOy中,已知点A(-1, 0)、B(1, 0), 动点C满足条件:△ABC的周长为

.记动点C的轨迹为曲线W.

(Ⅰ)求W的方程;

(Ⅱ)经过点(0, )且斜率为k的直线l与曲线W 有两个不同的交点PQ

k的取值范围;

       (Ⅲ)已知点M),N(0, 1),在(Ⅱ)的条件下,是否存在常数k,使得向量

共线?如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

 

一、

20080506

题号

1

2

3

4

5

6

7

8

9

10

11

12

选项

A

D

C

A

A

C

B

B

C

D

C

B

二、填空题:

13.-1    14.5   15.    16.③④      

三、解答题:

17.解:(Ⅰ) =……1分

=……2分

  ……3分

 

……4分

  .……6分

(Ⅱ)在中,

……7分

由正弦定理知:……8分

=.    ……10分

18.解:(Ⅰ)选取的5只恰好组成完整“奥运吉祥物”的概率

6ec8aac122bd4f6e                                     ………………4分

(Ⅱ)6ec8aac122bd4f6e                              …………………5分            6ec8aac122bd4f6e

6ec8aac122bd4f6e                                      …………9分

ξ的分布列为:

ξ

10

8

6

4

P

3/28

31/56

9/28

1/56

6ec8aac122bd4f6e                                …………12分

19. 解法一:

   (1)设于点,∵,∴平面. 作,连结,则是二面角的平面角.…3分

 由已知得,

二面角的大小为.…6分

   (2)当中点时,有平面.

证明:取的中点连结,则

,故平面即平面.

,∴,又平面

.…………………………………………12分

解法二:以D为原点,以DA、DC、DP为x轴、y轴、z轴建立空间直角坐标系,则

.…………2分

   (1)

,设平面的一个法向量

,则.

设平面的一个法向量为,则.

,∴二面角的大小为. …………6分

   (2)令

 

由已知,,要使平面,只须,即则有

,得中点时,有平面.…12分

20解:(I)f(x)定义域为(一1,+∞),                        …………………2分

    由得x<一1或x>1/a,由得一1<x<1/a,

     f(x)的单调增区间为(1/a,+∞),单调减区间为(一1,1/a)…………………6分

(Ⅱ)由(I)可知:

    ①当0<a≤1/2时,,f(x)在[1,2]上为减函数,

    ………………………………8分

    ②当1/2<a<1时,f(x)在[1,1/a]上为减函数,在(1/a,2]上为增函数,

    …………………………………10分

    ③当a≥1时,f(x)在[1,2]上为增函数,

    …………………………………12分

21.解:(1),设动点P的坐标为,所以

所以

由条件,得,又因为是等比,

所以,所以,所求动点的轨迹方程 ……………………6分

   (2)设直线l的方程为

联立方程组得,

, …………………………………………8分

, ………………………………………………10分

直线RQ的方程为

  …………………………………………………………………12分

22. 解:(Ⅰ)由题意,                -----------------------------------------------------2分

,

        两式相减得.                --------------------3分

        当时,,

.            --------------------------------------------------4分

(Ⅱ)∵

,

       ,

  ,

  ………

 

以上各式相加得

.

  ,∴.      ---------------------------6分

.     -------------------------------------------------7分

,

.

.

         =.

.  -------------------------------------------------------------9分

(3)=

                    =4+

   =

                    .  -------------------------------------------10分

        ,  ∴ 需证明,用数学归纳法证明如下:

        ①当时,成立.

        ②假设时,命题成立即

        那么,当时,成立.

        由①、②可得,对于都有成立.

       ∴.       ∴.--------------------12分