设得: 查看更多

 

题目列表(包括答案和解析)

(08年潍坊市质检)(14分)已知向量m=(a,-x),n=(ln(1+ex),a+1),= m?n 且x=1处取得极值.

   (1)求a的值,并判断的单调性;

   (2)当

   (3)设△ABC的三个顶点ABC都在图象上,横坐标依次成等差数列,证明:△ABC为钝角三角形,并判断是否可能是等腰三角形,说明理由.

 

查看答案和解析>>

设函数f(x)=在[1,+∞上为增函数.  

(1)求正实数a的取值范围;

(2)比较的大小,说明理由;

(3)求证:(n∈N*, n≥2)

【解析】第一问中,利用

解:(1)由已知:,依题意得:≥0对x∈[1,+∞恒成立

∴ax-1≥0对x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

(2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上为增函数,

∴n≥2时:f()=

  

 (3)  ∵   ∴

 

查看答案和解析>>

已知数列{an}满足:(其中常数λ>0,n∈N*).
(1)求数列{an}的通项公式;
(2)当λ=4时,是否存在互不相同的正整数r,s,t,使得ar,as,at成等比数列?若存在,给出r,s,t满足的条件;若不存在,说明理由;
(3)设Sn为数列{an}的前n项和.若对任意n∈N*,都有(1-λ)Sn+λan≥2λn恒成立,求实数λ的取值范围.

查看答案和解析>>

已知数列{an}满足:a1=n2+2n(其中常数λ>0,n∈N*),
(1)求数列{an}的通项公式;
(2)当λ=4时,是否存在互不相同的正整数r,s,t,使得ar,as,at成等比数列?若存在,给出r,s,t满足的条件;若不存在,说明理由;
(3)设Sn为数列{an}的前n项和,若对任意n∈N*,都有(1-λ)Sn+λan≥2λn恒成立,求实数λ的取值范围。

查看答案和解析>>

已知数列{an}满足:a1++ +…+=n2+2n(其中常数λ>0,n∈N*).

(1)求数列{an}的通项公式;

(2)当λ=4时,是否存在互不相同的正整数r,s,t,使得ar,as,at成等比数列?若存在,给出r,s,t满足的条件;若不存在,说明理由;

(3)设Sn为数列{an}的前n项和.若对任意n∈N*,都有(1-λ)Sn+λan≥2λn恒成立,求实数λ的取值范围.

 

查看答案和解析>>


同步练习册答案