由 解得. -------------5分 查看更多

 

题目列表(包括答案和解析)

解::因为,所以f(1)f(2)<0,因此f(x)在区间(1,2)上存在零点,又因为y=与y=-在(0,+)上都是增函数,因此在(0,+)上是增函数,所以零点个数只有一个方法2:把函数的零点个数个数问题转化为判断方程解的个数问题,近而转化成判断交点个数问题,在坐标系中画出图形


由图看出显然一个交点,因此函数的零点个数只有一个

袋中有50个大小相同的号牌,其中标着0号的有5个,标着n号的有n个(n=1,2,…9),现从袋中任取一球,求所取号码的分布列,以及取得号码为偶数的概率.

查看答案和解析>>

由下面四个图形中的点数分别给出了四个数列的前四项,将每个图形的层数增加可得到这四个数列的后继项.按图中多边形的边数依次称这些数列为“三角形数列”、“四边形数列”,将构图边数增加到可得到“边形数列”,记它的第项为

  

   1,3,6,10        1,4,9,16          1,5,12,22         1,6,15,28

(1)       求使得的最小的取值;

(2)       试推导关于的解析式;

 ( 3)  是否存在这样的“边形数列”,它的任意连续两项的和均为完全平方数,若存在,指出所有满足条件的数列并证明你的结论;若不存在,请说明理由.

 

查看答案和解析>>

由下面四个图形中的点数分别给出了四个数列的前四项,将每个图形的层数增加可得到这四个数列的后继项.按图中多边形的边数依次称这些数列为“三角形数列”、“四边形数列”,将构图边数增加到可得到“边形数列”,记它的第项为

1,3,6,10        1,4,9,16          1,5,12,22         1,6,15,28
(1)      求使得的最小的取值;
(2)      试推导关于的解析式;
( 3) 是否存在这样的“边形数列”,它的任意连续两项的和均为完全平方数,若存在,指出所有满足条件的数列并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

精英家教网为了解某校高三学生的视力情况,随机地抽查了该校200名高三学生的视力情况,得到频率分布直方图,如右图,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最多一组学生数为a,视力在4.6到5.0之间的频率为b,则a+b的值为
 

查看答案和解析>>

精英家教网为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右图所示;由于不慎将部分数据丢失,但知道前4组的频数从左到右依次是等比数列{an}的前四项,后6组的频数从左到右依次是等差数列{bn}的前六项.
(1)求数列{an}和{bn}的通项公式;
(2)求视力不小于5.0的学生人数;
(3)设
c1
a1
+
c2
a2
+…+
cn
an
=bn+1(n∈N+)
,求数列{cn}的通项公式.

查看答案和解析>>


同步练习册答案