题目列表(包括答案和解析)
已知椭圆
的离心率为
,过右焦点F的直线
与
相交于
、
两点,当
的斜率为1时,坐标原点
到
的距离为
(I)求
,
的值;
(II)
上是否存在点P,使得当
绕F转到某一位置时,有
成立?若存在,求出所有的P的坐标与
的方程;若不存在,说明理由。
已知椭圆E中心在原点O,焦点在x轴上,其离心率e=
,过点C(-1,0)的直线l与椭圆E相交于A、B两点,且满足
.?
(Ⅰ)用直线l的斜率k(k≠0)表示△OAB的面积;
(Ⅱ)当△OAB的面积最大时,求椭圆E的方程.
在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于
.
(Ⅰ)求动点P的轨迹方程;
(Ⅱ)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由。
(本小题满分15分)已知椭圆C:
过点(1,
),F1、F2分别为其左、右焦点,且离心率e=
;
(1)求椭圆C的方程;
(2)设过定点
的直线
与椭圆C交于不同的两点
、
,且∠
为锐角(其中
为坐标原点),求直线
的斜率
的取值范围.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com