(3)设点P是椭圆C 上的任意一点.过原点的直线L与椭圆相交于M.N两点.当直线PM .PN的斜率都存在.并记为 试探究的值是否与点P及直线L有关.并证明你的结论. 查看更多

 

题目列表(包括答案和解析)

设点F1,F2分别是椭圆数学公式的左、右焦点,P为椭圆C上任意一点.
(1)求数量积数学公式的取值范围;
(2)设过点F1且不与坐标轴垂直的直线交椭圆C于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.

查看答案和解析>>

设点F1,F2分别是椭圆C:
x2
2
+y2=1
的左、右焦点,P为椭圆C上任意一点.
(1)求数量积
PF1
-
PF2
的取值范围;
(2)设过点F1且不与坐标轴垂直的直线交椭圆C于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.

查看答案和解析>>

设点F1,F2分别是椭圆的左、右焦点,P为椭圆C上任意一点.
(1)求数量积的取值范围;
(2)设过点F1且不与坐标轴垂直的直线交椭圆C于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围.

查看答案和解析>>

设P是焦点为F1、F2椭圆
x2
a2
+
y2
b2
=1(a
>b>0)上的任意一点,若∠F1PF2的最大值为60°,方程ax2+bx-c=0的两个实根分别为x1和x2,则过点P(x1,x2)引圆x2+y2=2的切线共有
 
条.

查看答案和解析>>

已知椭圆C的中心在坐标原点,焦点在坐标轴上,且过A(-2,0)、B(2,0)、C(1,
3
2
)三点.
(1)求椭圆C的方程;
(2)设点P是射线y=
2
x(x≥
2
3
)
上(非端点)任意一点,由点P向椭圆C引两条切线PQ、PT(Q、T为切点),求证:直线QT的斜率为常数.

查看答案和解析>>


同步练习册答案