⑵求数列()最小的项. 文科数学评分参考 查看更多

 

题目列表(包括答案和解析)

已知二次函数f(x)=x2-2(10-3n)x+9n2-61n+100(n∈N*).
(1)设函数y=f(x)的图象的顶点的横坐标构成数列{an},求证:数列{an}是等差数列;
(2)在(1)的条件下,若数列{cn}满足cn=1+
1
4n-
25
2
+an
(n∈N*),求数列{cn}中最大的项和最小的项.

查看答案和解析>>

已知二次函数f(x)=x2-2(10-3n)x+9n2-61n+100(n∈N*).
(1)设函数y=f(x)的图象的顶点的横坐标构成数列{an},求证:数列{an}是等差数列;
(2)在(1)的条件下,若数列{cn}满足cn=1+(n∈N*),求数列{cn}中最大的项和最小的项.

查看答案和解析>>

已知(
x
-
2
x2
)n
(n∈N*)展开式中二项式系数和为256.
(1)此展开式中有没有常数项?有理项的个数是几个?并说明理由.
(2)求展开式中系数最小的项.

查看答案和解析>>

a11,a12,…a18
a21,a22,…a28

a81,a82,…a88
64个正数排成8行8列,如上所示:在符合aij(1≤i≤8,1≤j≤8)中,i表示该数所在的行数,j表示该数所在的列数.已知每一行中的数依次都成等差数列,而每一列中的数依次都成等比数列(每列公比q都相等)且a11=
1
2
,a24=1,a32=
1
4

(1)若a21=
1
4
,求a12和a13的值.
(2)记第n行各项之和为An(1≤n≤8),数列{an}、{bn}、{cn}满足an=
36
An
,联mbn+1=2(an+mbn)(m为非零常数),cn=
bn
an
,且c12+c72=100,求c1+c2+…c7的取值范围.
(3)对(2)中的an,记dn=
200
an
(n∈N)
,设Bn=d1•d2…dn(n∈N),求数列{Bn}中最大项的项数.

查看答案和解析>>

(2013•汕头二模)64个正数排成8行8列,如下所示:,其中aij表示第i行第j列的数.已知每一行中的数依次都成等差数列,每一列中的数依次都成等比数列,且公比均为q,a11=
1
2
,a24=1,a21=
1
4

(Ⅰ)求a12和a13的值;
(Ⅱ)记第n行各项之和为An(1≤n≤8),数列{an},{bn},{cn}满足an=
36
An
,mbn+1=2(an+mbn)(m为非零常数),cn=
bn
an
,且
c
2
1
+
c
2
7
=100
,求c1+c2+…+c7的取值范围;
(Ⅲ)对(Ⅱ)中的an,记dn=
200
an
(n∈N*)
,设Bn=d1d2dn(n∈N*),求数列{Bn}中最大项的项数.

查看答案和解析>>


同步练习册答案