又因为,单调递增, 查看更多

 

题目列表(包括答案和解析)

已知函数

(1)若函数在其定义域内为单调递增函数,求实数的取值范围。

(2)若函数,若在[1,e]上至少存在一个x的值使成立,求实数的取值范围。

【解析】第一问中,利用导数,因为在其定义域内的单调递增函数,所以 内满足恒成立,得到结论第二问中,在[1,e]上至少存在一个x的值使成立,等价于不等式 在[1,e]上有解,转换为不等式有解来解答即可。

解:(1)

因为在其定义域内的单调递增函数,

所以 内满足恒成立,即恒成立,

亦即

即可  又

当且仅当,即x=1时取等号,

在其定义域内为单调增函数的实数k的取值范围是.

(2)在[1,e]上至少存在一个x的值使成立,等价于不等式 在[1,e]上有解,设

 上的增函数,依题意需

实数k的取值范围是

 

查看答案和解析>>

下列说法:
①映射一定是函数;
②函数的定义域可以为空集;
③存在既是奇函数又是偶函数的函数
④y=1因为没有自变量,所以不是函数;
⑤若函数y=f(x)在(-∞,1)上单调递增,在(1,+∞)上也单调递增,则在(-∞,1)∪(1,+∞)上单调递增.
其中不正确的个数(  )

查看答案和解析>>

下列说法:
①映射一定是函数;
②函数的定义域可以为空集;
③存在既是奇函数又是偶函数的函数
④y=1因为没有自变量,所以不是函数;
⑤若函数y=f(x)在(-∞,1)上单调递增,在(1,+∞)上也单调递增,则在(-∞,1)∪(1,+∞)上单调递增.
其中不正确的个数( )
A.4
B.3
C.2
D.1

查看答案和解析>>

下列说法:
①映射一定是函数;
②函数的定义域可以为空集;
③存在既是奇函数又是偶函数的函数
④y=1因为没有自变量,所以不是函数;
⑤若函数y=f(x)在(-∞,1)上单调递增,在(1,+∞)上也单调递增,则在(-∞,1)∪(1,+∞)上单调递增.
其中不正确的个数( )
A.4
B.3
C.2
D.1

查看答案和解析>>

下列说法:
①映射一定是函数;
②函数的定义域可以为空集;
③存在既是奇函数又是偶函数的函数
④y=1因为没有自变量,所以不是函数;
⑤若函数y=f(x)在(-∞,1)上单调递增,在(1,+∞)上也单调递增,则在(-∞,1)∪(1,+∞)上单调递增.
其中不正确的个数


  1. A.
    4
  2. B.
    3
  3. C.
    2
  4. D.
    1

查看答案和解析>>


同步练习册答案