又∵S△ABC =.VD?ABC = VA?BDE 查看更多

 

题目列表(包括答案和解析)

在△ABC中,若它的内切圆半径为r,周长为C,则它的面积S△ABC=
rC
2
.请写出在正四面体中类似的命题:
若四面体四个面的面积分别为S1,S2,S3,S4,内切球的半径为R,则此四面体的体积为:V=
1
3
(S1+S2+S3+S4)R
若四面体四个面的面积分别为S1,S2,S3,S4,内切球的半径为R,则此四面体的体积为:V=
1
3
(S1+S2+S3+S4)R

查看答案和解析>>

设S、V分别表示面积和体积,如△ABC面积用S△ABC表示,三棱锥O-ABCV的体积用VO-ABC表示.对于命题:如果O是线段AB上一点,则|
OB
|•
OA
+|
OA
|•
OB
=
0
.将它类比到平面的情形是:若O是△ABC内一点,有S△OBC
OA
+S△OCA
OB
+S△OBA
OC
=
0
.将它类比到空间的情形应该是:若O是三棱锥A-BCD内一点,则有
VO-BCD
OA
+VO-ACD
OB
+VO-ABD
OC
+VO-ABC
OD
=
0
VO-BCD
OA
+VO-ACD
OB
+VO-ABD
OC
+VO-ABC
OD
=
0

查看答案和解析>>

精英家教网在三棱锥S-ABC中,SA=SB=SC=1,∠ASB=∠ASC=∠BSC=30°,如图,一只蚂蚁从点A出发沿三棱锥的表面爬行一周后又回到A点,则蚂蚁爬过的最短路程为
 

查看答案和解析>>

精英家教网如图,设三棱锥S-ABC的三个侧棱与底面ABC所成的角都是60°,又∠BAC=60°,且SA⊥BC.
(1)求证:S-ABC为正三棱锥;
(2)已知SA=a,求S-ABC的全面积.

查看答案和解析>>

(2010•崇明县二模)在四棱锥S-OABC中,SO⊥底面OABC,底面OABC为正方形.SO=OA=2,D、P为BC、SA的中点.
(1)求三棱锥S-ABC的体积V;
(2)求异面直线PD与AB所成角的大小.

查看答案和解析>>


同步练习册答案