C. D. 第Ⅱ卷(非选择题 共90分) 查看更多

 

题目列表(包括答案和解析)

 设函数,则的值域是(    )

A.     B.     C.     D.

第II卷(非选择题,共90分)

 

查看答案和解析>>

已知均为正数,,则的最小值是            (    )

         A.            B.           C.             D.

第Ⅱ卷  (非选择题  共90分)

二、填空题:本大题共4小题,每小题4分,共16分,将答案填在题中的横线上。

查看答案和解析>>

正项数列的前n项的乘积,则数列的前n项和中的最大值是                (    )

       A.    B.    C.    D.

第Ⅱ卷(非选择题,共90分)

查看答案和解析>>

 是定义在R上的偶函数,且在上为增函数,是锐角三角形的两个内角,则(  )

A.       B.

C.        D.

第Ⅱ卷(非选择题,共90分)

 

查看答案和解析>>

若函数在区间[a,b]上的图象为连续不断的一条曲线,则下列说法正确的是(    )

A.若,不存在实数使得

B.若,存在且只存在一个实数使得            

C.若,有可能存在实数使得  

D.若,有可能不存在实数使得

    第Ⅱ卷(非选择题 共90分)

 

查看答案和解析>>

一.选择题

序号

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

A

B

D

D

C

A

A

C

B

D

A

 

二填空题

13. 2或8;        14. ;            15.;           16..

三.解答题

17.解:(Ⅰ)

………………………………………………………………4分

…………………………6分

(Ⅱ) …………………………………………………8分

…………………………………………………………………………10分

………………………………………………………………………………12分

 

18.解:(Ⅰ)在Rt△ABC中,AB=1,∠BAC=60°,∴BC=,AC=2.

在Rt△ACD中,AC=2,∠CAD=60°,∴CD=2,AD=4. ……………………………2分

.………………………………………………………………4分

则V=.     ……………………………………………………………… 6分

(Ⅱ)∵PA=CA,F为PC的中点,∴AF⊥PC.            ……………………………………8分

∵PA⊥平面ABCD,∴PA⊥CD.

∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.∴CD⊥PC.

∵E为PD中点,F为PC中点,∴EF∥CD.则EF⊥PC.     ………………………………10分

∵AF∩EF=F,∴PC⊥平面AEF.………………………………………………………………12分

 

19.设第一个匣子里的三把钥匙为A,B,C,第二个匣子里的三把钥匙为a,b,c(设A,a能打开所有门,B只能打开第一道门,b只能打开第二道门,C,c不能打开任何一道门)

(Ⅰ)第一道门打不开的概率为;……………………………………………………………5分

(Ⅱ)能进入第二道门的情况有Aa,Ab,Ac,Ba,Bb,而二把钥匙的不同情况有Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc共9种,故能进入第二道门的概率为……………………………………………………………12分

 

20.(Ⅰ)依题

 

…………………………………………………3分

为等差数列,a1=1,d=2

………………………………………………………………………………………………5分

(Ⅱ)设公比为q,则由b1b2b3=8,bn>0…………………………………………………6分

成等差数列

………………………………………………………………………………………8分

…………………………………………………………………………………10分

……………………………………………………………………12分

 

21解:(Ⅰ)依题PN为AM的中垂线

…………………………………………………2分

又C(-1,0),A(1,0)

所以N的轨迹E为椭圆,C、A为其焦点…………………………………………………………4分

a=,c=1,所以为所求………………………………………………………5分

(Ⅱ)设直线的方程为:y=k(x-1),代入椭圆E的方程:x2+2y2=2得:

(1+2k2)x2-4k2x+2k2-2=0………………(1)

设G(x1,y1)、H(x2,y2),则x1,x2是(1)的两个根.

…………………………………………………………7分

依题

………………………………………………………9分

解得:………………………………………………………………………12分

 

22.解法(一):

   时,……①

时,恒成立,

时,①式化为……②

时,①式化为……③…………………………………………………5分

,则…………………………7分

所以

故由②,由③………………………………………………………………………13分

综上时,恒成立.………………………………………………14分

解法(二):

   时,……①

时,,不合题意…………………………………………………2分

恒成立

上为减函数,

,矛盾,…………………………………………………………………………………5分

=

   若,故在[-1,1]内,

,得,矛盾.

依题意,  解得

综上为所求.……………………………………………………………………………14分

 

 

 

 

 


同步练习册答案