(2)法1:由题意知:的可能取值为0.1.2.3.-----------5分 查看更多

 

题目列表(包括答案和解析)

已知函数的最小值为0,其中

(Ⅰ)求的值;

(Ⅱ)若对任意的成立,求实数的最小值;

(Ⅲ)证明).

【解析】(1)解: 的定义域为

,得

当x变化时,的变化情况如下表:

x

-

0

+

极小值

因此,处取得最小值,故由题意,所以

(2)解:当时,取,有,故时不合题意.当时,令,即

,得

①当时,上恒成立。因此上单调递减.从而对于任意的,总有,即上恒成立,故符合题意.

②当时,,对于,故上单调递增.因此当取时,,即不成立.

不合题意.

综上,k的最小值为.

(3)证明:当n=1时,不等式左边==右边,所以不等式成立.

时,

                      

                      

在(2)中取,得

从而

所以有

     

     

     

     

      

综上,

 

查看答案和解析>>

现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.

(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;

(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;

(Ⅲ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期望.

【解析】依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的概率为.

设“这4个人中恰有i人去参加甲游戏”为事件

.

(1)这4个人中恰有2人去参加甲游戏的概率

(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B,则.由于互斥,故

所以,这个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为.

(3)的所有可能取值为0,2,4.由于互斥,互斥,故

    

所以的分布列是

0

2

4

P

随机变量的数学期望.

 

查看答案和解析>>

已知函数f(x)=x3-ax.
(I)当a=3时,求f(x)在[-2,2]上的最大值和最小值;
(II)已知函数g(x)=ax(|x+a|-1),记h(x)=f(x)-g(x)(x∈[0,2]),当函数h(x)的最大值为0时,求实数a的取值范围.

查看答案和解析>>

已知函数的最小值为0,其中

(1)求a的值

(2)若对任意的,有成立,求实数k的最小值

(3)证明

 

查看答案和解析>>

已知函数的最大值为0,其中

(1)求的值;

(2)若对任意,有成立,求实数的最大值;

(3)证明:

 

查看答案和解析>>


同步练习册答案