∩于.求证:⊥平面. 查看更多

 

题目列表(包括答案和解析)

求证:如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面。

查看答案和解析>>

在平面直角坐标系中,已知三个点列,其中,满足向量与向量平行,并且点列在斜率为6的同一直线上,

证明:数列是等差数列;

试用表示

,是否存在这样的实数,使得在两项中至少有一项是数列的最小项?若存在,请求出实数的取值范围;若不存在,请说明理由;

,对于区间[0,1]上的任意l,总存在不小于2的自然数k,当n??k时,恒成立,求k的最小值.

查看答案和解析>>

在平面直角坐标系xOy中,已知定点A(-2,0)、B(2,0),M是动点,且直线MA与直线MB的斜率之积为,设动点M的轨迹为曲线C,
(Ⅰ)求曲线C的方程;
(Ⅱ)过定点T(-1,0)的动直线l与曲线C交于P,Q两点,若,证明:为定值。

查看答案和解析>>

在平面直角坐标系xOy上,给定抛物线L:y=x2,实数p,q满足p2-4q≥0,x1,x2是方程x2-px+q=0的两根,记φ(p,q)=max{|x1|,|x2|}.
(1)过点A(p0p0)(p0≠0)作L的切线教y轴于点B。证明:对线段AB上任一点Q(p,q)有φ(p,q)=
(2)设M(a,b)是定点,其中a,b满足a2-4b>0,a≠0。过M(a,b)作L的两条切线l1,l2,切点分别为E(p1p12),E′(p2p22),l1,l2与y轴分别交与F,F'。线段EF上异于两端点的点集记为X。证明:M(a,b)∈X|P1|>|P2|φ(a,b)=
(3)设D={(x,y)|y≤x-1,y≥(x+1)2-},当点(p,q)取遍D时,求φ(p,q)的最小值 (记为φmin)和最大值(记为φmax)。

查看答案和解析>>

在复平面内, 是原点,向量对应的复数是=2+i。

(Ⅰ)如果点A关于实轴的对称点为点B,求向量对应的复数

(Ⅱ)复数对应的点C,D。试判断A、B、C、D四点是否在同一个圆上?并证明你的结论。

【解析】第一问中利用复数的概念可知得到由题意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i  ∵ (2+i)(-2i)=2-4i,      ∴  =

第二问中,由题意得,=(2,1)  ∴

同理,所以A、B、C、D四点到原点O的距离相等,

∴A、B、C、D四点在以O为圆心,为半径的圆上

(Ⅰ)由题意得,A(2,1)  ∴B(2,-1)   ∴  =(0,-2) ∴=-2i     3分

     ∵ (2+i)(-2i)=2-4i,      ∴  =                 2分

(Ⅱ)A、B、C、D四点在同一个圆上。                              2分

证明:由题意得,=(2,1)  ∴

  同理,所以A、B、C、D四点到原点O的距离相等,

∴A、B、C、D四点在以O为圆心,为半径的圆上

 

查看答案和解析>>

一、选择题(每题5分共50分)

1.D            2.A            3.B           4.C            5.C           

6.C       7.B        8.C    9.C    10.D

二、填空题(每题5分共20分)

       11.6ec8aac122bd4f6e          12.6ec8aac122bd4f6e                 13.6ec8aac122bd4f6e                  

14.(0,2),6ec8aac122bd4f6e               15.3

三、解答题(共80分)

16.解:(Ⅰ)由已知得:6ec8aac122bd4f6e,  

6ec8aac122bd4f6e是△ABC的内角,所以6ec8aac122bd4f6e.    

(2)由正弦定理:6ec8aac122bd4f6e6ec8aac122bd4f6e

又因为6ec8aac122bd4f6e6ec8aac122bd4f6e,又6ec8aac122bd4f6e是△ABC的内角,所以6ec8aac122bd4f6e

 

17.证明:连结AB,A1D,在正方形中,A1B=A1D,O是BD中点,

∴A1O⊥BD;                 

连结OM,A1M,A1C1,设AB=a,则AA1=a,MC=6ec8aac122bd4f6ea=MC1

OA=OC=6ec8aac122bd4f6ea,AC=6ec8aac122bd4f6ea,

∴A1O2=A1A2+AO2=a2+6ec8aac122bd4f6ea2=6ec8aac122bd4f6ea2,OM2=OC2+MC2=6ec8aac122bd4f6ea2,A1M2=A1C12+MC12=2a2+6ec8aac122bd4f6ea2=6ec8aac122bd4f6ea2,∴A1M2=A1O2+OM2

∴A1O⊥OM,  

∴AO1⊥平面MBD

18解:(Ⅰ)6ec8aac122bd4f6e

因为函数6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e取得极值,则有6ec8aac122bd4f6e6ec8aac122bd4f6e

6ec8aac122bd4f6e

解得6ec8aac122bd4f6e6ec8aac122bd4f6e

(Ⅱ)由(Ⅰ)可知,6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e时,6ec8aac122bd4f6e

6ec8aac122bd4f6e时,6ec8aac122bd4f6e

6ec8aac122bd4f6e时,6ec8aac122bd4f6e

所以,当6ec8aac122bd4f6e时,6ec8aac122bd4f6e取得极大值6ec8aac122bd4f6e,又6ec8aac122bd4f6e6ec8aac122bd4f6e

则当6ec8aac122bd4f6e时,6ec8aac122bd4f6e的最大值为6ec8aac122bd4f6e

因为对于任意的6ec8aac122bd4f6e,有6ec8aac122bd4f6e恒成立,

所以 6ec8aac122bd4f6e

解得 6ec8aac122bd4f6e6ec8aac122bd4f6e

因此6ec8aac122bd4f6e的取值范围为6ec8aac122bd4f6e

19.解(Ⅰ)由题意知6ec8aac122bd4f6e6ec8aac122bd4f6e   6ec8aac122bd4f6e  

当n≥2时,6ec8aac122bd4f6e6ec8aac122bd4f6e

两式相减得 6ec8aac122bd4f6e

整理得:6ec8aac122bd4f6e    

∴数列{6ec8aac122bd4f6e}是以2为首项,2为公比的等比数列。

6ec8aac122bd4f6e   

(Ⅱ)由(Ⅰ)知6ec8aac122bd4f6e,∴bn=n6ec8aac122bd4f6e  

6ec8aac122bd4f6e, …………①

6ec8aac122bd4f6e, …………②

①-②得

6ec8aac122bd4f6e,   

6ec8aac122bd4f6e,    

6ec8aac122bd4f6e,   

20.解:设这台机器最佳使用年限是n年,则n年的保养、维修、更换易损零件的总费用为:

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

等号当且仅当6ec8aac122bd4f6e6ec8aac122bd4f6e

答:这台机器最佳使用年限是12年,年平均费用的最小值为1.55万元.

21.⑴c=2, a=3 双曲线的方程为

⑵ 得 (1?3k2)x2?6kx?9=0

  x1+x2= , x1x2=

由△>0 得 k2<1

  由= x1x2+y1y2=(1+k2) x1x2+k(x1+x2)+2>2得 <k2<3

  所以,<k2<1

即k∈(?1, )∪( , 1 )

附加题

(1)证明:先将6ec8aac122bd4f6e变形:6ec8aac122bd4f6e,

6ec8aac122bd4f6e,即6ec8aac122bd4f6e时,∴6ec8aac122bd4f6e恒成立,

6ec8aac122bd4f6e的定义域为6ec8aac122bd4f6e。                                     

反之,若6ec8aac122bd4f6e对所有实数6ec8aac122bd4f6e都有意义,则只须6ec8aac122bd4f6e

6ec8aac122bd4f6e,即6ec8aac122bd4f6e,解得6ec8aac122bd4f6e,故6ec8aac122bd4f6e。  

(2)解析:设6ec8aac122bd4f6e

6ec8aac122bd4f6e是增函数,

∴当6ec8aac122bd4f6e最小时,6ec8aac122bd4f6e最小。

6ec8aac122bd4f6e,                               

 显然,当6ec8aac122bd4f6e时,6ec8aac122bd4f6e取最小值为6ec8aac122bd4f6e

此时6ec8aac122bd4f6e为最小值。                      

(3)证明:当6ec8aac122bd4f6e时,6ec8aac122bd4f6e

当且仅当m=2时等号成立。                                  

6ec8aac122bd4f6e。                               

 

 

 


同步练习册答案