(3) 设存在点C(x , x2+x)(其中0<x<).使四边形ABCO面积最大.∵△OAB面积为定值.∴只要△OBC面积最大.四边形ABCO面积就最大. 过点C作x轴的垂线CE.垂足为E.交OB于点F.则 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系xOy中,抛物线经过点N(2,-5),过点Nx轴的平行线交此抛物线左侧于点MMN=6.

(1)求此抛物线的解析式;

(2)点Px,y)为此抛物线上一动点,连接MP交此抛物线的对称轴于点D,当△DMN为直角三角形时,求点P的坐标;

(3)设此抛物线与y轴交于点C,在此抛物线上是否存在点Q,使∠QMN=∠CNM ?若存在,求出点Q的坐标;若不存在,说明理由.

 

【解析】(1)把点M、N的坐标点入抛物线,即可求得,a,b

(2)由△DMN为直角三角形,求出点D的坐标,然后求出直线MD的解析式,即可求得点P的坐标

(3)逆向思维,设存在点Q进行解答

 

查看答案和解析>>

在平面直角坐标系xOy中,抛物线经过点N(2,-5),过点Nx轴的平行线交此抛物线左侧于点MMN=6.

(1)求此抛物线的解析式;

(2)点Px,y)为此抛物线上一动点,连接MP交此抛物线的对称轴于点D,当△DMN为直角三角形时,求点P的坐标;

(3)设此抛物线与y轴交于点C,在此抛物线上是否存在点Q,使∠QMN=∠CNM ?若存在,求出点Q的坐标;若不存在,说明理由.

 

【解析】(1)把点M、N的坐标点入抛物线,即可求得,a,b

(2)由△DMN为直角三角形,求出点D的坐标,然后求出直线MD的解析式,即可求得点P的坐标

(3)逆向思维,设存在点Q进行解答

 

查看答案和解析>>

精英家教网在直角坐标系中,O为坐标原点,点A的坐标为(2,2),点C是线段OA上的一个动点(不运动至O,A两点),过点C作CD⊥x轴,垂足为D,以CD为边在右侧作正方形CDEF.连接AF并延长交x轴的正半轴于点B,连接OF,设OD=t.
(1)求tan∠FOB的值;
(2)用含t的代数式表示△OAB的面积S;
(3)是否存在点B,使以B,E,F为顶点的三角形与△OFE相似?若存在,请求出所有满足要求的B点的坐标;若不存在,请说明理由.

查看答案和解析>>

如图所示,在平面直角坐标系中,直线y=x+1与y=-
3
4
x+3
分别交x轴于点B和点C,点D是直线y=-
3
4
x+3
与y轴的交点.
(1)求点B、C、D的坐标;
(2)设M(x,y)是直线y=x+1上一点,△BCM的面积为S,请写出S与x的函数关系式;来探究当点M运动到什么位置时,△BCM的面积为10,并说明理由.
(3)线段CD上是否存在点P,使△CBP为等腰三角形,如果存在,直接写出P点的坐标;如果不存在,请说明理由.

查看答案和解析>>

在平面直角坐标系内,已知点A和C的坐标分别为(8,0)和(5,4),过点C作CB⊥y轴于点B,点D从B出发,以每秒1个单位的速度延BO向终点O运动,点P从C出发,以每秒a(0<a≤1.25)个单位的速度延CB向终点B运动(当D点到达O点,P点也随之停止).过D作DE∥AC交OA于点E,过P作PQ∥AC交OA于点,连接PD,再过E作EF∥PD交PQ于F.设P、D两点的运动时间为t.
(1)分别求过A、C两点的直线和过B、C、A三点的抛物线的解析式;
(2)若a=1,求t为何值时,四边形DEFP为矩形?并求出此时直线PQ的解析式;
(3)是否存在这样的a,t的值,使四边形DEFP为正方形?若存在,求出此时a,t的值和正方形的面积;若不存在,说明理由;
(4)以A、O、C为顶点的△AOC中,M是AC上一动点,过M作MN∥OA交OC于N,试问,在x轴上是否存在点R,使得△MNR为等腰直角三角形?若存在,求出点R的坐标;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案