(Ⅰ)求整数的值, 查看更多

 

题目列表(包括答案和解析)

(2013•烟台二模)为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球 不喜爱打篮球 合计
男生 5
女生 10
合计 50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
3
5

(1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;
(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为ξ,求ξ的分布列与期望.
下面的临界值表供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

(2012•佛山二模)空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,解代表空气污染越严重:
PM2.5日均浓度 0~35 35~75 75~115 115~150 150~250 >250
空气质量级别 一级 二级 三级 四级 五级 六级
空气质量类别 轻度污染 中度污染 重度污染 严重污染
某市2012年3月8日-4月7日(30天)对空气质量指数PM2.5进行检测,获得数据后整理得到如图条形图:
(1)估计该城市一个月内空气质量类别为良的概率;
(2)从空气质量级别为三级和四级的数据中任取2个,求至少有一天空气质量类别为中度污染的概率.

查看答案和解析>>

将正整数1,2,3,4,…,n2(n≥2)任意排成n行n列的数表.对于某一个数表,计算各行和各列中的任意两个数a,b(a>b)的比值
a
b
,称这些比值中的最小值为这个数表的“特征值”.
(1)当n=2时,试写出排成的各个数表中所有可能的不同“特征值”;
(2)若aij表示某个n行n列数表中第i行第j列的数(1≤i≤n,1≤j≤n),且满足aij=
i+(j-i-1)n,i<j
i+(n-i+j-1)n,i≥j
请分别写出n=3,4,5时数表的“特征值”,并由此归纳此类数表的“特征值”(不必证明);
(3)对于由正整数1,2,3,4,…,n2排成的n行n列的任意数表,若某行(或列)中,存在两个数属于集合{n2-n+1,n2-n+2,…,n2},记其“特征值”为λ,求证:λ≤
n+1
n

查看答案和解析>>

已知函数.

(Ⅰ)求函数的单调区间;

(Ⅱ)若对定义域每的任意恒成立,求实数的取值范围;

(Ⅲ)证明:对于任意正整数,不等式恒成立。

 

查看答案和解析>>

是正整数),利用赋值法解决下列问题:
(1)求
(2)为偶数时,求
(3)是3的倍数时,求

查看答案和解析>>


同步练习册答案