同理. 查看更多

 

题目列表(包括答案和解析)

20、同学:你去过黄山吗?在黄山的上山路上,有一些断断续续的台阶,如图是其中的甲、乙段台阶路的示意图,图8中的数字表示每一级台阶的高度(单位:cm).并且数d、e、e、c、c、d的方差p,数据b、d、g、f、a、h的方差q,(10cm<a<b<c<d<e<f<g<h<20cm,且 p<q),请你用所学过的有关统计知识(平均数、中位数、方差和极差)回答下列问题:
(1)两段台阶路有哪些相同点和不同点?
(2)哪段台阶路走起来更舒服?为什么?
(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.

查看答案和解析>>

理解同解方程的定义,再解题:
(1)同解方程的定义为:如果两个方程的解相同,那么这两个方程叫同解方程;反之如果两个方程是同解方程,那么这两个方程的解是一样的;例如x+1=4与x+51=54的解都是x=3,这两个方程是同解方程;
(2)已知方程4x-a=1与方程
13
x
+(a+2)=3x+2都是关于x的方程,且这两个方程的解相同,求它们的解.

查看答案和解析>>

同学解分式方程
2-|x|x-2
=0
,得出原方程的解为x=2或x=-2.请认为他的解答对吗?.请你作出判断:
,并说明理由:

查看答案和解析>>

同学们,在学习了轴对称变换后我们经常会遇到三角形中的“折叠”问题.我们通常会考虑到折叠前与折叠后的图形全等,并利用全等的性质,即对应角相等,对应边相等来研究解决数学中的“折叠”问题.
(1)如图①,把△ABC纸片沿DE折叠,当点A落在△ABC内部时,我们不仅可以发现AE=A′E,AD=
 
,而且我们还可以通过发现∠AED=∠A′ED,∠ADE=∠
 
,∠A=∠A′,从而求得∠1+∠2=2∠A.
(2)如图②,当点A落在△ABC外部时,我们发现∠2=∠DFA+∠
 
,∠DFA=∠1+∠
 
,那么(1)中的∠1+∠2=2∠A在这里还成立吗?如成立,请说明理由.如不成立,请写出成立的式子并说明理由.
(3)已知Rt△ABC中,∠C=90°,AC=6,BC=8,将它的一个锐角翻折,使该锐角顶点落在其对边的中点D处,折痕交另一直角边于E,交斜边于F,请你模仿图①,图②,画出相应的示意图并求出△CDE的周长.精英家教网

查看答案和解析>>

12、同学们,你们一定喜欢计算机!而计算机程序处理中使用的是只有数码0和1的二进制数,我们常使用的是十进制的数.这两者可以互换,如将二进制数1101换成十进制数应为1×23+1×21+1×20=13,按此方法,则将十进制数37换成二进制数应为
100101

查看答案和解析>>


同步练习册答案