(3)设.由直线与圆方程联立得解得.所求直线方程为20 查看更多

 

题目列表(包括答案和解析)

如图,分别是椭圆+=1()的左、右焦点,是椭圆的顶点,是直线与椭圆的另一个交点,=60°.

(Ⅰ)求椭圆的离心率;

(Ⅱ)已知△的面积为40,求的值.

【解析】 (Ⅰ)由题=60°,则,即椭圆的离心率为

(Ⅱ)因△的面积为40,设,又面积公式,又直线

又由(Ⅰ)知,联立方程可得,整理得,解得,所以,解得

 

查看答案和解析>>

设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点,

(1)求椭圆E的方程;

(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,若不存在说明理由。

【解析】本试题主要是考查了椭圆方程的求解,待定系数法求解,并且考查了圆与椭圆的位置关系的研究,利用恒有交点,联立方程组和韦达定理一起表示向量OA,OB,并证明垂直。

 

查看答案和解析>>

设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点,

(1)求椭圆E的方程;

(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,若不存在说明理由。

【解析】本试题主要是考查了椭圆方程的求解,待定系数法求解,并且考查了圆与椭圆的位置关系的研究,利用恒有交点,联立方程组和韦达定理一起表示向量OA,OB,并证明垂直。

 

查看答案和解析>>

设椭圆E: (a,b>0)过M(2,) ,N(,1)两点,O为坐标原点,

(1)求椭圆E的方程;

(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,若不存在说明理由。

【解析】本试题主要是考查了椭圆方程的求解,待定系数法求解,并且考查了圆与椭圆的位置关系的研究,利用恒有交点,联立方程组和韦达定理一起表示向量OA,OB,并证明垂直。

 

查看答案和解析>>

设椭圆 )的一个顶点为分别是椭圆的左、右焦点,离心率 ,过椭圆右焦点 的直线  与椭圆 交于 , 两点.

(1)求椭圆的方程;

(2)是否存在直线 ,使得 ,若存在,求出直线  的方程;若不存在,说明理由;

【解析】本试题主要考查了椭圆的方程的求解,以及直线与椭圆的位置关系的运用。(1)中椭圆的顶点为,即又因为,得到,然后求解得到椭圆方程(2)中,对直线分为两种情况讨论,当直线斜率存在时,当直线斜率不存在时,联立方程组,结合得到结论。

解:(1)椭圆的顶点为,即

,解得椭圆的标准方程为 --------4分

(2)由题可知,直线与椭圆必相交.

①当直线斜率不存在时,经检验不合题意.                    --------5分

②当直线斜率存在时,设存在直线,且.

,       ----------7分

,               

   = 

所以,                               ----------10分

故直线的方程为 

 

查看答案和解析>>


同步练习册答案