题目列表(包括答案和解析)
解:(1)由抛物线C1:
得顶点P的坐标为(2,5)………….1分
∵点A(-1,0)在抛物线C1上∴
.………………2分
(2)连接PM,作PH⊥x轴于H,作MG⊥x轴于G..
∵点P、M关于点A成中心对称,
∴PM过点A,且PA=MA..
∴△PAH≌△MAG..
∴MG=PH=5,AG=AH=3.
∴顶点M的坐标为(
,5).………………………3分
∵抛物线C2与C1关于x轴对称,抛物线C3由C2平移得到
∴抛物线C3的表达式
. …………4分
(3)∵抛物线C4由C1绕x轴上的点Q旋转180°得到
∴顶点N、P关于点Q成中心对称.
由(2)得点N的纵坐标为5.
设点N坐标为(m,5),作PH⊥x轴于H,作NG⊥x轴于G,作PR⊥NG于R.
∵旋转中心Q在x轴上,
∴EF=AB=2AH=6.
∴EG=3,点E坐标为(
,0),H坐标为(2,0),R坐标为(m,-5).
根据勾股定理,得
①当∠PNE=90º时,PN2+ NE2=PE2,
解得m=
,∴N点坐标为(
,5)
②当∠PEN=90º时,PE2+ NE2=PN2,
解得m=
,∴N点坐标为(
,5).
③∵PN>NR=10>NE,∴∠NPE≠90º ………7分
综上所得,当N点坐标为(
,5)或(
,5)时,以点P、N、E为顶点的三角形是直角三角形.…………………………………………………………………………………8分
解不等式组或方程:
(1)求不等式组
的整数解;
(2)解一元二次方程:x2-4x+1=0(配方法)
解方程x(x-1)=2.
有学生给出如下解法:
∵x(x-1)=2=1×2=(-1)×(-2),
∴
或
或
或![]()
解上面第一、四方程组,无解;解第二、三方程组,得x=2或x=-1.
∴x=2或x=-1.
请问:这个解法对吗?试说明你的理由.如果你觉得这个解法不对,请你求出方程的解.
解方程x(x-1)=2
有学生给出如下解法:
∵x(x-1)=2=1×2=(-1)×(-2),
![]()
解上面第一、四方程组,无解;解第二、三方程组,得x=2或x=-1
∴x=2或x=-1
请问:这个解法对吗?试说明你的理由
阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.
例如:
是x2-2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项——见横线上的部分).
请根据阅读材料解决下列问题:
(1)比照上面的例子,写出x2-4x+2三种不同形式的配方;
(2)将a2+ab+b2配方(至少两种形式);
(3)已知a2+b2+c2-ab-3b-2c+4=0,求a+b+c的值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com