∴.∴MC=15k. 查看更多

 

题目列表(包括答案和解析)

如图,一学生要测量校园内一颗水杉树的高度,他站在距离水杉树10m的B处,测得树顶的仰角为∠CAD=30°,已知测角仪的架高AB=2m,那么这棵水杉树高是(  )

查看答案和解析>>

如图所示,在正三角形ABC内有一点M,且MA=3,MB=4,MC=5.
(1)求∠BMA的度数;
(2)求正三角形ABC的面积.
(提示:把△ACM绕点A逆时针旋转60°,使点C与点B重合)

查看答案和解析>>

下列运算中,正确的是(  )
A、
6a+1
3
=2a+1
B、3mn-3n=m
C、x2+x2=x4
D、3a+2a=5a

查看答案和解析>>

精英家教网已知:如图,把矩形OCBA放置于直角坐标系中,OC=3,BC=2,取AB的中点M,连接MC,把△MBC沿x轴的负方向平移OC的长度后得到△DAO.
(1)试直接写出点D的坐标;
( 2 )已知点B与点D在经过原点的抛物线上,点P在第一象限内的该抛物线上移动,过点P作PQ⊥x轴于点Q,连接OP.若以O、P、Q为顶点的三角形与△DAO相似,试求出点P的坐标;
(3)试问在(2)抛物线的对称轴上是否存在一点T,使得
|TO-TB|的值最大?若存在,则求出点T点的坐标;若不存在,则说明理由.

查看答案和解析>>

已知:直线AB:y=
12
x+3与x轴交于点A,与y轴交于点B,另外有点C(0,2)和点M(m,0).⊙M以MC为半径,⊙M与直线AB相切,求经过点A、B、M的抛物线的解析式.

查看答案和解析>>


同步练习册答案