于是 .为所求.----------------------14分 查看更多

 

题目列表(包括答案和解析)

(本题14分).在四棱锥中,底面是矩形,平面.以的中点为球心、为直径的球面交于点,交于点

(1)求直线与平面所成的角的正弦值;

(2)求点到平面的距离.

 

查看答案和解析>>

(本题14分).在四棱锥中,底面是矩形,平面.以的中点为球心、为直径的球面交于点,交于点

(1)求直线与平面所成的角的正弦值;

(2)求点到平面的距离.

 

查看答案和解析>>

(本题14分).在四棱锥中,底面是矩形,平面.以的中点为球心、为直径的球面交于点,交于点

(1)求直线与平面所成的角的正弦值;

(2)求点到平面的距离.

查看答案和解析>>

(本题14分).在四棱锥中,底面是矩形,平面.以的中点为球心、为直径的球面交于点,交于点
(1)求直线与平面所成的角的正弦值;
(2)求点到平面的距离.

查看答案和解析>>

某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100棵种子中的发芽数,得到如下资料:
日期 12月1日 12月2日 12月3日 12月4日 12月5日
温差x(℃) 10 11 13 12 8
发芽y(颗) 23 25 30 26 16
该农科所确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,剩下的2组数据用于回归方程检验.
参考公式:回归直线的方程是:
?
y
=bx+a
,其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,a=
.
y
-b
.
x
;其中
?
y
i
是与xi
对应的回归估计值.
(Ⅰ)若选取的是12月1日与12月5日的2组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程
?
y
=bx+a

(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(Ⅰ)中所得的线性回归方程是否可靠?
(Ⅲ) 请预测温差为14℃的发芽数.

查看答案和解析>>


同步练习册答案