已知函数 . (1) 当a = 0时.求的最小值, (2)若在上是单调函数.求a的取值范围, (3)设各项为正的无穷数列满足 证明:≤1(n∈N*). 查看更多

 

题目列表(包括答案和解析)

已知函数(a为常数,a>0).

(Ⅰ)若是函数f(x)的一个极值点,求a的值;

(Ⅱ)求证:当0<a≤2时,f(x)在上是增函数;

(Ⅲ)若对任意的a∈(1,2),总存在,使不等式f(x0)>m(1-a2)成立,求实数m的取值范围.

查看答案和解析>>

已知函数f(x)=ax3+bx2+(b-a)x(a,b不同时为零的常数),导函数为f′(x).
(1)当a=
1
3
时,若存在x∈[-3,-1]使得f′(x)>0成立,求b的取值范围;
(2)求证:函数y=f′(x)在(-1,0)内至少有一个零点;
(3)若函数f(x)为奇函数,且在x=1处的切线垂直于直线x+2y-3=0,关于x的方程f(x)=-
1
4
t
在[-1,t](t>-1)上有且只有一个实数根,求实数t的取值范围.

查看答案和解析>>

已知函数f(x)=
3x2
ax+b
(a,b为常数),且方程f(x)-2x-1=0有两个实数根分别为-1,-2
(1)求函数f(x)的解析式;
(2)当x≥
5
2
时,不等式c2+16<f(x)+2c恒成立,求实数c的取值范围.

查看答案和解析>>

已知函数f(x)=xln(1+x)-a(x+1),其中a为常数.
(I)当x∈[1,+∞)时,f'(x)>0恒成立,求实数a的取值范围;
(II)求g(x)=f′(x)-
axx+1
的单调区间.

查看答案和解析>>

21、已知函数f(x)的导数f′(x)满足0<f′(x)<1,常数α为方程f(x)=x的实数根.
(1)求证:当x>α时,总有x>f(x)成立;
(2)若函数f(x)的定义域为I,对任意[a,b]⊆I,存在x0∈[a,b],使等式f(b)-f(a)=(b-a)f′(x0)成立,求证:方程f(x)=x不存在异于α的实数根.

查看答案和解析>>

一.1、A,2、C,3、B,4、D,5、C,6、B,7、A,8、C,9、A,10、D

二.11、-3;.12、1;13、14、15、

三.16.解:

……(2’)

整理得:……………………………(4’)

又A为锐角,…………………(6’)

(2)由(1)知………………………(7’)

……………………………(12’)

当B=600时,Y取得最大值。……………………(13’)

 17. 设答对题的个数为y,得分为,y=0,1,2,4 ,=0,2,4,8………(1’)

,      

0

2

4

8

P

 

的分布列为

…………………………………10分

  

 

 

 

(2)E=…………………………12分

答:该人得分的期望为2分……………………………………………………13分

18. 解:(1)取AC中点D,连结SD、DB.

∵SA=SC,AB=BC,

∴AC⊥SD且AC⊥BD,

∴AC⊥平面SDB,又SB平面SDB,

∴AC⊥SB-----------4分

(2)∵AC⊥平面SDB,AC平面ABC,

∴平面SDB⊥平面ABC.

过N作NE⊥BD于E,NE⊥平面ABC,

过E作EF⊥CM于F,连结NF,

则NF⊥CM.

∴∠NFE为二面角N-CM-B的平面角---------------6分

∵平面SAC⊥平面ABC,SD⊥AC,∴SD⊥平面ABC.

又∵NE⊥平面ABC,∴NE∥SD.

∵SN=NB,

∴NE=SD===, 且ED=EB.

在正△ABC中,由平几知识可求得EF=MB=

在Rt△NEF中,tan∠NFE==2

∴二面角N―CM―B的大小是arctan2-----------------------8分

(3)在Rt△NEF中,NF==

∴S△CMN=CM?NF=

S△CMB=BM?CM=2-------------11分

设点B到平面CMN的距离为h,

∵VB-CMN=VN-CMB,NE⊥平面CMB,

S△CMN?h=S△CMB?NE,∴h==.

即点B到平面CMN的距离为--------13分

19. (1)解:当0<t≤10时,
  是增函数,且                3分
  当20<t≤40时,是减函数,且                    6分
  所以,讲课开始10分钟,学生的注意力最集中,能持续10分钟                7分

(2)解:,所以,讲课开始25分钟时,学生的注意力比讲课开始后5分钟更集中 9分

(3)当0<t≤10时,令得:                   10分
  当20<t≤40时,令得:                      12分
  则学生注意力在180以上所持续的时间
  所以,经过适当安排,老师可以在学生达到所需要的状态下讲授完这道题         14分

 

20.解:

(1)设

最大值为。故

………………………(6’)

(2)由椭圆离心率得双曲线

……………(7’)

①     当AB⊥x轴时,

.…………(9’)

②当时.

………………………………………………(12’)

同在内……………(13’)

=

=有成立。…………………………(14’).

21. (1)
  当a≥0时,在[2,+∞)上恒大于零,即,符合要求;      2分
    当a<0时,令,g (x)在[2,+∞)上只能恒小于零
  故△=1+4a≤0或,解得:a≤
  ∴a的取值范围是                                     6分

(2)a = 0时,
  当0<x<1时,当x>1时,∴              8分

(3)反证法:假设x1 = b>1,由
    ∴
  故
   ,即  ①
  又由(2)当b>1时,,∴
  与①矛盾,故b≤1,即x1≤1
  同理可证x2≤1,x3≤1,…,xn≤1(n∈N*)                                 14分