题目列表(包括答案和解析)
如图,已知直线
(
)与抛物线
:
和圆
:
都相切,
是
的焦点.
(Ⅰ)求
与
的值;
(Ⅱ)设
是
上的一动点,以
为切点作抛物线
的切线
,直线
交
轴于点
,以
、
为邻边作平行四边形
,证明:点
在一条定直线上;
(Ⅲ)在(Ⅱ)的条件下,记点
所在的定直线为
, 直线
与
轴交点为
,连接
交抛物线
于
、
两点,求△
的面积
的取值范围.
![]()
【解析】第一问中利用圆
:
的圆心为
,半径
.由题设圆心到直线
的距离
.
即
,解得
(
舍去)
设
与抛物线的相切点为
,又
,得
,
.
代入直线方程得:
,∴
所以
,![]()
第二问中,由(Ⅰ)知抛物线
方程为
,焦点
. ………………(2分)
设
,由(Ⅰ)知以
为切点的切线
的方程为
.
令
,得切线
交
轴的
点坐标为
所以
,
, ∵四边形FAMB是以FA、FB为邻边作平行四边形
∴
因为
是定点,所以点
在定直线![]()
第三问中,设直线
,代入
得
结合韦达定理得到。
解:(Ⅰ)由已知,圆
:
的圆心为
,半径
.由题设圆心到直线
的距离
.
即
,解得
(
舍去). …………………(2分)
设
与抛物线的相切点为
,又
,得
,
.
代入直线方程得:
,∴
所以
,
.
……(2分)
(Ⅱ)由(Ⅰ)知抛物线
方程为
,焦点
. ………………(2分)
设
,由(Ⅰ)知以
为切点的切线
的方程为
.
令
,得切线
交
轴的
点坐标为
所以
,
, ∵四边形FAMB是以FA、FB为邻边作平行四边形,
∴
因为
是定点,所以点
在定直线
上.…(2分)
(Ⅲ)设直线
,代入
得
, ……)得
,
…………………………… (2分)
,
.
△
的面积
范围是![]()
如图1,在
中,
,D,E分别为AC,AB的中点,点F为线段CD上的一点,将
沿DE折起到
的位置,使
,如图2.
(Ⅰ)求证:DE∥平面![]()
(Ⅱ)求证:![]()
(Ⅲ)线段
上是否存在点Q,使
?说明理由。
![]()
【解析】(1)∵DE∥BC,由线面平行的判定定理得出
(2)可以先证
,得出
,∵
∴![]()
∴![]()
(3)Q为
的中点,由上问
,易知
,取
中点P,连接DP和QP,不难证出
,
∴
∴
,又∵
∴![]()
如图,在底面是正方形的四棱锥P—ABCD中,平面PCD⊥平面ABCD,PC=PD=CD=2.
(I)求证:PD⊥BC;
(II)求二面角B—PD—C的正切值。
![]()
【解析】第一问利用∵平面PCD⊥平面ABCD,又∵平面PCD∩平面ABCD=CD,
BC在平面ABCD内 ,BC⊥CD,∴BC⊥平面PCD.
∴PD⊥BC.
第二问中解:取PD的中点E,连接CE、BE,
为正三角形,![]()
由(I)知BC⊥平面PCD,∴CE是BE在平面PCD内的射影,
∴BE⊥PD.∴∠CEB为二面角B—PD—C的平面角,进而求解。
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com