证:直线MN过一定点. 查看更多

 

题目列表(包括答案和解析)

已知椭圆C:,直线恒过的定点F为椭圆的一个焦点,且椭圆上的点到焦点F的最大距离为3,

(1)求椭圆C的方程;

(2)若直线MN为垂直于x轴的动弦,且M、N均在椭圆C上,定点T(4,0),直线MF与直线NT交于点S

①求证:点S恒在椭圆C上;

②求△MST面积的最大值。

查看答案和解析>>

给定椭圆C:,称圆心在原点O、半径为的圆是椭圆C的“伴椭圆” ,若椭圆C的一个焦点为,其短轴上的一个端点到距离为

(1)、求椭圆C的方程及其“伴椭圆”的方程;

(2)、若倾斜角为的直线与椭圆C只有一个公共点,且与椭圆C的“伴椭圆”相交于M、N两点,求弦MN的长。

(3)、若点P是椭圆C“伴椭圆”上一动点,过点P作直线,使得与椭圆C都只有一个公共点,求证:

 

查看答案和解析>>

给定椭圆C:,称圆心在原点O、半径为的圆是椭圆C的“伴椭圆” ,若椭圆C的一个焦点为,其短轴上的一个端点到距离为

(1)、求椭圆C的方程及其“伴椭圆”的方程;

(2)、若倾斜角为的直线与椭圆C只有一个公共点,且与椭圆C的“伴椭圆”相交于M、N两点,求弦MN的长。

(3)、若点P是椭圆C“伴椭圆”上一动点,过点P作直线,使得与椭圆C都只有一个公共点,求证:

 

查看答案和解析>>

给定椭圆C:,称圆心在原点O、半径为的圆是椭圆C的“伴椭圆” ,若椭圆C的一个焦点为,其短轴上的一个端点到距离为

(1)、求椭圆C的方程及其“伴椭圆”的方程;

(2)、若倾斜角为的直线与椭圆C只有一个公共点,且与椭圆C的“伴椭圆”相交于M、N两点,求弦MN的长。

(3)、若点P是椭圆C“伴椭圆”上一动点,过点P作直线,使得与椭圆C都只有一个公共点,求证:

查看答案和解析>>

给定椭圆C:,称圆心在原点O、半径为的圆是椭圆C的“伴椭圆” ,若椭圆C的一个焦点为,其短轴上的一个端点到距离为

(1)、求椭圆C的方程及其“伴椭圆”的方程;

(2)、若倾斜角为的直线与椭圆C只有一个公共点,且与椭圆C的“伴椭圆”相交于M、N两点,求弦MN的长。

(3)、若点P是椭圆C“伴椭圆”上一动点,过点P作直线,使得与椭圆C都只有一个公共点,求证:

查看答案和解析>>


同步练习册答案