在闭区间[a,b]上成立即可 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=mx3+nx2(m、n∈R ,m≠0)的图像在(2,f(2))处的切线与x轴平行.

(1)求n,m的关系式并求f(x)的单调减区间;

(2)证明:对任意实数0<x1<x2<1, 关于x的方程:

在(x1,x2)恒有实数解

(3)结合(2)的结论,其实我们有拉格朗日中值定理:若函数f(x)是在闭区间[a,b]上连续不断的函数,且在区间(a,b)内导数都存在,则在(a,b)内至少存在一点x0,使得.如我们所学过的指、对数函数,正、余弦函数等都符合拉格朗日中值定理条件.试用拉格朗日中值定理证明:

当0<a<b时,(可不用证明函数的连续性和可导性)

查看答案和解析>>

 给出下列四个命题:

①“向量,的夹角为锐角”的充要条件是“·>0”;

②如果f(x)=x,则对任意的x1x2Î(0,+¥),且x1¹x2,都有f()>;

③设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意xÎ[a,b],都有|f(x)−g(x)|£1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=x2−3x+4与g(x)=2x−3在[a,b]上是“密切函数”,则其“密切区间”可以是[2,3];

④记函数y=f(x)的反函数为y=f −1(x),要得到y=f −1(1−x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f −1(1−x)的图象.其中真命题的序号是            。(请写出所有真命题的序号)

 

查看答案和解析>>

 给出下列四个命题:

①“向量,的夹角为锐角”的充要条件是“·>0”;

②如果f(x)=x,则对任意的x1x2Î(0,+¥),且x1¹x2,都有f()>;

③设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意xÎ[a,b],都有|f(x)−g(x)|£1成立,则称f(x)和g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=x2−3x+4与g(x)=2x−3在[a,b]上是“密切函数”,则其“密切区间”可以是[2,3];

④记函数y=f(x)的反函数为y=f −1(x),要得到y=f −1(1−x)的图象,可以先将y=f(x)的图象关于直线y=x做对称变换,再将所得的图象关于y轴做对称变换,再将所得的图象沿x轴向左平移1个单位,即得到y=f −1(1−x)的图象.其中真命题的序号是            。(请写出所有真命题的序号)

 

查看答案和解析>>

如果函数f(x)在开区间(a,b)内__________都有导数,就说f(x)在开区间(a,b)内可导.这时对于每一个x∈(a,b),都对应着一个确定的导数f′(x),从而构成了一个新的函数f′(x) ,我们就把这个函数f′(x)叫做f(x)在开区间(a,b)上的导函数,简称导数,记作f′(x)或y′,即?

y′=f′(x)=_____________.

查看答案和解析>>

有以下命题:
①若f(x)在闭区间[a,b]上的图象连续不断,且f(x)在区间(a,b)上有零点,则有f(a)f(b)<0;
②求f(x)=x2的零点时,不能用二分法.
③已知g(x)=f(x)-x,h(x)=f[f(x)]-x,若g(x)的零点为x1,x2.则x1,x2也是h(x)的零点;
④若x1是f(x)=2x+2x-5函数的零点,x2是函数g(x)=2log2(x-1)+2x-5的零点,则x1+x2=
72

其中正确的命题是
②③④
②③④
(写出所正确命题的序号)

查看答案和解析>>


同步练习册答案