≥0只需证明 查看更多

 

题目列表(包括答案和解析)

(1)证明:函数f(x)=x+
4
x
在(2,+∞)上单调递增;
(2)探究函数f(x)=x+
a
x
(a>0)的单调性(只需写出结论,不用证明).

查看答案和解析>>

解答题:解答应写出文字说明、证明过程或演算步骤.

某港口水的深度y(米)是时间t(0≤t≤24,单位:时)的函数,记作y=f(t),下面是某日水深的数据:

经长期观察,y=f(t)的曲线可以近似地看成函数的图象.

(1)

试根据以上数据,求出函数y=f(t)的近似表达式

(2)

一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的(船舶停靠时,船底只需下碰海底即可),某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需的时间).

查看答案和解析>>

解答题:解答应写出文字说明、证明过程或演算步骤.

某港口水的深度y(米)是时间t(0≤t≤24,单位:时)的函数,记作y=f(t),下面是某日水深的数据:

经长期观察,y=f(t)的曲线可以近似地看成函数的图象.

(1)

试根据以上数据,求出函数y=f(t)的近似表达式

(2)

一般情况下,船舶航行时,船底离海底的距离为5米或5米以上时认为是安全的(船舶停靠时,船底只需下碰海底即可),某船吃水深度(船底离水面的距离)为6.5米,如果该船希望在同一天内安全进出港,请问,它至多能在港内停留多长时间(忽略进出港所需的时间).

查看答案和解析>>

(1)判断函数在x∈(0,+∞)上的单调性并证明你的结论;
(2)猜想函数在x∈(-∞,0)∪(0,+∞)上的单调性。(只需写出结论,不用证明)
(3)利用题(2)的结论,求使不等式在x∈[1,5]上恒成立时的实数m的取值范围。

查看答案和解析>>

(1) 判断函数f(x)=x+在x∈(0,+∞)上的单调性并证明你的结论?
(2)猜想函数f(x)=x+,(a>0)在x∈(-∞,0)∪(0,+∞)上的单调性?(只需写出结论,不用证明)
(3)利用题(2)的结论,求使不等式x+-m2<0在x∈[1,5]上恒成立时的实数m的取值范围?

查看答案和解析>>


同步练习册答案