(1)求出.两点的坐标(可用含的代数式表示), 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系中,已知两点坐标P1(x1,y1)P2(x2,y2)我们就可以使用两点间距离公式P1P2=
(x1-x2)2+(y1-y 2)2
来求出点P1与点P2间的距离.如:已知P1(-1,2),P2(0,3),则P1P2=
(-1-0)2+(2-3)2
=
2

通过阅读材以上材料,请回答下列问题:
(1)已知点P1坐标为(-1,3),点P2坐标为(2,1)
①求P1P2=
13
13

②若点Q在x轴上,则△QP1P2的周长最小值为
6+
13
6+
13

(2)如图,在平面直角坐标系中,四边形OABC为长方形,点A、B的坐标分别为
(4,0)(4,3),动点M、N分别从点O,点B同时出发,以每秒1个单位的速度运动,其中M点沿OA向终点A运动,N点沿BC向终点C运动,过点N作NF⊥BC交AC于F,交AO于G,连结MF.
当两点运动了t秒时:
①直接写出直线AC的解析式:
y=-
3
4
x+3
y=-
3
4
x+3

②F点的坐标为(
4-t
4-t
3
4
t
3
4
t
);(用含t的代数式表示)
③记△MFA的面积为S,求S与t的函数关系式;(0<t<4);
④当点N运动到终点C点时,在y轴上是否存在点E,使△EAN为等腰三角形?若存在,请直接写出点E的坐标,若不存在,请说明理由.

查看答案和解析>>

如图,在梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0),(14,3),(4,3).点P、Q同时从原点出发,分别做匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC、CB向终点B运动.当这两点中有一点到达自己的终点时,另一点也停止运动.

   (1)设从出发起运动了x秒,如果点Q的速度为每秒2个单位,试分别写出这时点Q在OC上或CB上时的坐标(用含x的代数式表示,不要求写出x的取值范围);

(2)设从出发起运动了x秒,如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半.

①试用含x的代数式表示这时点Q所经过的路程和它的速度;

②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如果有可能,求出相应的x的值和P、Q的坐标,如不可能,请说明理由.

查看答案和解析>>

精英家教网如图,抛物线y=mx2-2mx-3m(m>0)与x轴交于A、B两点,与y轴交于C点.
(1)请求出抛物线顶点M的坐标(用含m的代数式表示),A、B两点的坐标;
(2)经探究可知,△BCM与△ABC的面积比不变,试求出这个比值;
(3)是否存在使△BCM为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.

查看答案和解析>>

如图,抛物线y=mx2-2mx-3m(m>0)与x轴交于A、B两点,与y轴交于C点.
(1)请求出抛物线顶点M的坐标(用含m的代数式表示),A、B两点的坐标;
(2)经探究可知,△BCM与△ABC的面积比不变,试求出这个比值;
(3)是否存在使△BCM为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.

查看答案和解析>>

如图,抛物线y=mx2-2mx-3m(m>0)与x轴交于A、B两点,与y轴交于C点.
(1)请求出抛物线顶点M的坐标(用含m的代数式表示),A、B两点的坐标;
(2)经探究可知,△BCM与△ABC的面积比不变,试求出这个比值;
(3)是否存在使△BCM为直角三角形的抛物线?若存在,请求出;如果不存在,请说明理由.

查看答案和解析>>

阅卷须知:

1.一律用红钢笔或红圆珠笔批阅.

2.为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可.若考生的解法与本解法不同,正确者可参照评分参考给分,解答右端所注分数,表示考生正确做到这一步应得的累加分数.

一、选择题(共8个小题,每小题4分,共32分)

题 号

1

2

3

4

5

6

7

8

答 案

B

D

A

C

B

A

D

A

 

二、填空题(共4个小题,每小题4分,共16分)

题 号

9

10

11

12

答 案

(或

 

三、解答题(共5个小题,每小题5分,共25分)

13. 解:

                    …………………………………3分

                                     

      .                                  …………………………………5分

 

14. 解:由不等式,得.        …………………………………1分

     由不等式,得.          …………………………………2分

        ∴ 原不等式组的解集是.      …………………………………3分

        在数轴上表示为:

 

 

 

                                                                                                                           …………………………………5分

 

15. 解:去分母,得

       .               …………………………………2分

去括号,整理,得

    .                             

解得 .                               …………………………………4分

经检验,是原方程的根.                …………………………………5分

所以,原方程的根为

 

16.证明:∵ 四边形ABCD是菱形,

.       …………………2分

中,

.                       …………………………………4分

.                             …………………………………5分

 

17.解:

      

       .                           …………………………………3分

.            …………………………………5分

四、解答题(共2个小题,每小题5分,共10分)

18. 解:(1)由题意得,所以,

∵ 在中,

    ∴ .即.            …………………………………1分

    在等腰梯形中,,∴

    ∴ .                               …………………………………3分

   (2)由(1)得,

        在中,

        所以,.           …………………………………5分

 

19.(1)证明:如图,联结.                 …………………………………1分

    ∵

    ∴

    ∴ 是等边三角形.

    ∴

    ∴

    ∴ .                          …………………………………2分

    所以,是⊙的切线.                   …………………………………3分

  (2)解:作点.

    ∵ ,∴

    又,所以在中,

    在中,∵ ,∴

    由勾股定理,可求

    所以,.          …………………………………5分

五、解答题(本题满分6分)

20. 解:

  (1)10%.          ……………………2分

  (2)340人,见右图.……………………4分

  (3)约660万人.    ……………………6分

 

 

 

六、解答题(共2个小题,第21题4分,第22题5分,共9分)

21. 解:(1)在抛物线中,令,得

   解得).所以,

   ∵ ,∴

   所以,点的坐标为(,0),               …………………………………1分

         点的坐标为().             …………………………………2分

  (2)的面积,所以,当时,

                                              …………………………………4分

 

22. 解:(1)跳棋子跳过路径及各点字母如图.   

                                 ………………3分

  (2)跳跃15次后,停在处,

     过,垂足为点,

     则

         由,∴

                                               …………………………………5分

 

 

 

 

 

七、解答题(本题满分7分)

23.(1)证明:设的面积分别为,矩形的面积为

由题意,得

∴ 四边形的面积是定值.             …………………………………2分

   (2)解:由(1)可知,则

  又∵

  ∴

  ∵

     ∴

     ∴ .                             …………………………………4分

   (3)解:①由题意知:.       …………………………………5分

   ②两点坐标分别为

  ∴

  ∴

  ∴

  ∴ 当时,有最大值.           …………………………………7分

八、解答题(本题满分7分)

24.解:(1)如图(1),当时,边与⊙相切;

            如图(2),当时,边与⊙相切;

            如图(3),当时,边与⊙相切;

            如图(4),当时,边所在直线与⊙相切.

                                               …………………………………4分

   (2)由(1),可知,当时,半圆与直线围成的区域与

        三边围成的区域有重叠部分,如图(2)、(3)的阴影部分所示,重叠部分的面积分别为

                                           …………………………………7分

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

九、解答题(本题满分8分)

25.(1)证明:∵ ,∴ .∴

    又∵ ,∴

    ∴ .∴ .   …………………………………2分

   (2)证明:如图,过点,交于点

    ∵ 的中点,容易证明

    在中,∵ ,∴

    ∴

    ∴ .                        …………………………………5分

  (3)解:的周长

       设,则

    ∵ ,∴ .即

    ∴

    由(1)知

    ∴

    ∴ 的周长的周长

    ∴ 的周长与值无关.               …………………………………8分

 


同步练习册答案