(A)2 (B)1 (C) (D) 查看更多

 

题目列表(包括答案和解析)

||=

(A)2               (B)2       (C)    (D)1

查看答案和解析>>

19、下面(A),(B),(C),(D)为四个平面图形:
交点数 边数 区域数
(A) 4 5 2
(B)  5 8
(C) 12 5
(D) 15
(1)数出每个平面图形的交点数、边数、区域数,并将相应结果填入表格;
(2)观察表格,若记一个平面图形的交点数、边数、区域数分别为E,F,G,试猜想E,F,G之间的等量关系(不要求证明);
(3)现已知某个平面图形有2010个交点,且围成2010个区域,试根据以上关系确定该平面图形的边数.

查看答案和解析>>

下面的(a)、(b)、(c)、(d)为四个平面图.精英家教网
(1)数一数,每个平面图各有多少个顶点?多少条边?它们分别围成了多少个区域?请将结果填入下表(按填好的例子做).
顶点数 边数 区域数
(a) 4 6 3
(b)
(c)
(d)
(2)观察上表,推断一个平面图的顶点数、边数、区域数之间有什么关系?
(3)现已知某个平面图有2014个顶点,且围成了2014个区域,试根据以上关系确定这个平面图的边数.

查看答案和解析>>

2log510+log50.25=

A)0        (B)1         (C) 2         (D)4 

查看答案和解析>>

2log510+log50.25=

A)0        (B)1         (C) 2         (D)4 

查看答案和解析>>

1-10.CDBBA   CACBD

11. 12. ①③④   13.-2或1  14.   15.2  16.  17..

18.

解:(1)由已知            7分

(2)由                                                                   10分

由余弦定理得                          14分

 

19.(1)证明:∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC,                                  3分

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC.                             5分

(2)解:过C作CE⊥AB于E,连接PE,

∵PA⊥底面ABCD,∴CE⊥面PAB,

∴直线PC与平面PAB所成的角为,                                                    10分

∵AD=CD=1,∠ADC=60°,∴AC=1,PC=2,

中求得CE=,∴.                                                  14分

 

20.解:(1)由①,得②,

②-①得:.                              4分

(2)由求得.          7分

   11分

.                                                                 14分

 

21.解:

(1)由得c=1                                                                                     1分

,                                                         4分

市一次模文数参答―1(共2页)

                                                                                        5分

(2)时取得极值.由.                                                                                          8分

,∴当时,

上递减.                                                                                       12分

∴函数的零点有且仅有1个     15分

 

22.解:(1) 设,由已知

,                                        2分

设直线PB与圆M切于点A,

                                                 6分

(2) 点 B(0,t),点,                                                                  7分

进一步可得两条切线方程为:

,                                   9分

,                                          13分

,又时,

面积的最小值为                                                                            15分