现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排.每排有40个座位.有一次报告会恰好坐满了听众.报告会结束后.为了听取意见.需要请32名听众进行座谈.③东方中学共有160名教职工.其中一般教师120名.行政人员16名.后勤人员24名.为了了解教职工对学校在校务公开方面的意见.拟抽取一个容量为20的样本.较为合理的抽样方法是 (A) ①简单随机抽样,②系统抽样,③分层抽样.(B) ①简单随机抽样,②分层抽样,③系统抽样.(C) ①系统抽样,②简单随机抽样,③分层抽样. 查看更多

 

题目列表(包括答案和解析)

1、现要完成下列3项抽样调查:
①从10盒酸奶中抽取3盒进行食品卫生检查.
②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.
③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.
较为合理的抽样方法是(  )

查看答案和解析>>

现要完成下列3项抽样调查: 

①从10盒酸奶中抽取3盒进行食品卫生检查.

②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.

③某中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.

较为合理的抽样方法是(    )                             

A. ①系统抽样,②简单随机抽样,③分层抽样

B.①简单随机抽样,②分层抽样,③系统抽样

C. ①简单随机抽样,②系统抽样,③分层抽样

D.①分层抽样,②系统抽样,③简单随机抽样

 

查看答案和解析>>

现要完成下列3项抽样调查:
①从10盒酸奶中抽取3盒进行食品卫生检查.
②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.
③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.
较为合理的抽样方法是(  )
A.①简单随机抽样,②系统抽样,③分层抽样
B.①简单随机抽样,②分层抽样,③系统抽样
C.①系统抽样,②简单随机抽样,③分层抽样
D.①分层抽样,②系统抽样,③简单随机抽样

查看答案和解析>>

现要完成下列3项抽样调查:
①从10盒酸奶中抽取3盒进行食品卫生检查.
②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.
③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员2名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.
较为合理的抽样方法是(  )
A.①简单随机抽样,②系统抽样,③分层抽样
B.①简单随机抽样,②分层抽样,③系统抽样
C.①系统抽样,②简单随机抽样,③分层抽样
D.①分层抽样,②系统抽样,③简单随机抽样

查看答案和解析>>

现要完成下列3项抽样调查:

①从10盒酸奶中抽取3盒进行食品卫生检查.

②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.

③高新中学共有160名教职工,其中教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是(  )

(A)①简单随机抽样,②系统抽样,③分层抽样

(B)①简单随机抽样,②分层抽样,③系统抽样

(C)①系统抽样,②简单随机抽样,③分层抽样

(D)①分层抽样,②系统抽样,③简单随机抽样

查看答案和解析>>

一、选择题(每小题5分,共50分)

二、填空题(每小题4分,共28分)

三、解答题

18.解:(Ⅰ)由已有

                                    (4分)

 

                                            (6分)

 

(Ⅱ)由(1)                                 (8分)

所以              (10分)

                                                      (12分)

                                  (14分)

 

19.解:(Ⅰ)同学甲同学恰好投4次达标的概率           (4分)

(Ⅱ)可取的值是

                                              (6分)

                                            (8分)

                                              (10分)

的分布列为

3

4

5

                                                                      (12分)

所以的数学期望为                   (14分)

 

20.解:(Ⅰ)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC                (4分)

 

(Ⅱ)取CD的中点E,则AE⊥CD,∴AE⊥AB,又PA⊥底面ABCD,∴PA⊥AE

建立如图所示空间直角坐标系,则

A(0,,0,0),P(0,0,),C(,0),D(,0)

                  (6分)

易求为平面PAC的一个法向量.

为平面PDC的一个法向量                                  (9分)

∴cos

故二面角D-PC-A的正切值为2.  (11分)

(Ⅲ)设,则

   ,

解得点,即   (13分)

(不合题意舍去)或

所以当的中点时,直线与平面所成角的正弦值为   (15分)

 

21.解:(Ⅰ)设直线的方程为:

,所以的方程为                     (4分)

点的坐标为.

可求得抛物线的标准方程为.                                       (6分)

(Ⅱ)设直线的方程为,代入抛物线方程并整理得    (8分)     

,则

                                      (11分)

时上式是一个与无关的常数.

所以存在定点,相应的常数是.                                     (14分)

 

22.解:(Ⅰ)当               (2分)

上递增,在上递减

所以在0和2处分别达到极大和极小,由已知有

,因而的取值范围是.                                   (4分)

(Ⅱ)当时,

市一次模理数参答―3(共4页)

                                        (7分)

上递减,在上递增.

从而上递增

因此                           (10分)

(Ⅲ)假设,即=

                                     (12分)

(x)=0的两根可得,

从而有

≥2,这与<2矛盾.                                

故直线与直线不可能垂直.                                               (15分)