已知点(0.1)..直线.都是圆的切线(点不在轴上). 查看更多

 

题目列表(包括答案和解析)

(本题满分14分)

已知点M在椭圆+=1(ab>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点F

(1)若圆My轴相切,求椭圆的离心率;

(2)若圆My轴相交于AB两点,且△ABM是边长为2的正三角形,求椭圆的方程.

查看答案和解析>>

(本题满分14分)

已知点M在椭圆+=1(ab>0)上,以M为圆心的圆与x轴相切于椭圆的右焦点F

(1)若圆My轴相切,求椭圆的离心率;

(2)若圆My轴相交于AB两点,且△ABM是边长为2的正三角形,求椭圆的方程.

查看答案和解析>>

(本题满分14分)

已知中心在原点,对称轴为坐标轴的椭圆,左焦点,一个顶点坐标为(0,1)

(1)求椭圆方程;

(2)直线过椭圆的右焦点交椭圆于A、B两点,当△AOB面积最大时,求直线方程。

查看答案和解析>>

(本题满分14分)

已知定点A(-2,0),动点B是圆(F为圆心)上一点,线段AB的垂直平分线交BF于P.

(1)求动点P的轨迹方程;

(第20题图)

 
(2)是否存在过点E(0,-4)的直线l交P点的轨迹于点R,T,且满足O为原点).若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

(本题满分14分)

已知定点A(-2,0),动点B是圆(F为圆心)上一点,线段AB的垂直平分线交BF于P.

(1)求动点P的轨迹方程;

(2)是否存在过点E(0,-4)的直线l交P点的轨迹于点R,T,    且满足O为原点).若存在,求直线l的方程;若不存在,请说明理由.

查看答案和解析>>

一、选择题(每小题5分,共50分)

二、填空题(每小题4分,共28分)

三、解答题

18.解:(Ⅰ)由已有

                                    (4分)

 

                                            (6分)

 

(Ⅱ)由(1)                                 (8分)

所以              (10分)

                                                      (12分)

                                  (14分)

 

19.解:(Ⅰ)同学甲同学恰好投4次达标的概率           (4分)

(Ⅱ)可取的值是

                                              (6分)

                                            (8分)

                                              (10分)

的分布列为

3

4

5

                                                                      (12分)

所以的数学期望为                   (14分)

 

20.解:(Ⅰ)∵PA⊥底面ABCD,BC平面AC,∴PA⊥BC

∵∠ACB=90°,∴BC⊥AC,又PA∩AC=A,∴BC⊥平面PAC                (4分)

 

(Ⅱ)取CD的中点E,则AE⊥CD,∴AE⊥AB,又PA⊥底面ABCD,∴PA⊥AE

建立如图所示空间直角坐标系,则

A(0,,0,0),P(0,0,),C(,0),D(,0)

                  (6分)

易求为平面PAC的一个法向量.

为平面PDC的一个法向量                                  (9分)

∴cos

故二面角D-PC-A的正切值为2.  (11分)

(Ⅲ)设,则

   ,

解得点,即   (13分)

(不合题意舍去)或

所以当的中点时,直线与平面所成角的正弦值为   (15分)

 

21.解:(Ⅰ)设直线的方程为:

,所以的方程为                     (4分)

点的坐标为.

可求得抛物线的标准方程为.                                       (6分)

(Ⅱ)设直线的方程为,代入抛物线方程并整理得    (8分)     

,则

                                      (11分)

时上式是一个与无关的常数.

所以存在定点,相应的常数是.                                     (14分)

 

22.解:(Ⅰ)当               (2分)

上递增,在上递减

所以在0和2处分别达到极大和极小,由已知有

,因而的取值范围是.                                   (4分)

(Ⅱ)当时,

市一次模理数参答―3(共4页)

                                        (7分)

上递减,在上递增.

从而上递增

因此                           (10分)

(Ⅲ)假设,即=

                                     (12分)

(x)=0的两根可得,

从而有

≥2,这与<2矛盾.                                

故直线与直线不可能垂直.                                               (15分)