16.某校从参加高二年级期末考试的学生中抽出60名学生.将其成绩分成六段.-后画出如下部分频率分布直方图.观察图形的信息.可知这次考试成绩的平均分为 . 查看更多

 

题目列表(包括答案和解析)

某校从参加高二年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段后画出如下部分频率分布直方图,观察图形的信息,可知这次考试成绩的平均分为       

 

查看答案和解析>>

某校从参加高三年级第一学期期末考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数,满分为100分),将数学成绩进行分组并根据各组人数制成如下频率分布表:
分 组 频 数 频 率
[40,50 ) 2 0.04
[50,60 ) 3 0.06
[60,70 ) 14 0.28
[70,80 ) 15 0.30
[80,90 )
[90,100] 4 0.08
合 计
(Ⅰ)将上面的频率分布表补充完整,并估计本次考试全校85分以上学生的比例;
(Ⅱ)为了帮助成绩差的同学提高数学成绩,学校决定成立“二帮一”小组,即从成绩为[90,100]中任选出两位同学,共同帮助成绩在[40,50)中的某一个同学,试列出所有基本事件;若A1同学成绩为43分,B1同学成绩为95分,求A1、B1两同学恰好被安排在“二帮一”中同一小组的概率.

查看答案和解析>>

某校从参加高三年级第一学期期末考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数,满分为100分),将数学成绩进行分组并根据各组人数制成如下频率分布表:

(Ⅰ)将上面的频率分布表补充完整,并估计本次考试全校85分以上学生的比例;

(Ⅱ)为了帮助成绩差的同学提高数学成绩,学校决定成立“二帮一”小组,即从成绩为中任出两位同学,共同帮助成绩在中的某一个同学,试列出所有基本事件;若同学成绩为43分,同学成绩为95分,求两同学恰好被安排在“二帮一”中同一小组的概率.

分 组[来源:Zxxk.Com]

频 数

频 率

[ 40, 50 )

2

0.04

[ 50, 60 )

3

0.06

[60, 70 )

14

0.28

[ 70, 80 )

15

0.30

[ 80, 90 )

 

 

[ 90, 100 ]

4

0.08

合 计

 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

某校从参加高三年级第一学期期末考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数,满分为100分),将数学成绩进行分组并根据各组人数制成如下频率分布表:
分 组频 数频 率
[40,50 )20.04
[50,60 )30.06
[60,70 )140.28
[70,80 )150.30
[80,90 )
[90,100]40.08
合 计
(Ⅰ)将上面的频率分布表补充完整,并估计本次考试全校85分以上学生的比例;
(Ⅱ)为了帮助成绩差的同学提高数学成绩,学校决定成立“二帮一”小组,即从成绩为[90,100]中任选出两位同学,共同帮助成绩在[40,50)中的某一个同学,试列出所有基本事件;若A1同学成绩为43分,B1同学成绩为95分,求A1、B1两同学恰好被安排在“二帮一”中同一小组的概率.

查看答案和解析>>

某校从参加高三年级第一学期期末考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数,满分为100分),将数学成绩进行分组并根据各组人数制成如下频率分布表:

分 组

频 数

频 率

[ 40, 50 )

2

0.04

[ 50, 60 )

3

0.06

[ 60, 70 )

14

0.28

[ 70, 80 )

15

0.30

[ 80, 90 )

[ 90, 100 ]

4

0.08

合 计

(Ⅰ)将上面的频率分布表补充完整,并估计本次考试全校85分以上学生的比例;

(Ⅱ)为了帮助成绩差的同学提高数学成绩,学校决定成立“二帮一”小组,即从成绩为中任选出两位同学,共同帮助成绩在中的某一个同学,试列出所有基本事件;若同学成绩为43分,同学成绩为95分,求两同学恰好被安排在“二帮一”中同一小组的概率.

  

查看答案和解析>>

一.选择题 (本大题共10小题,每题5分,共50分)

1.C;    2.D;    3,A;    4.B;     5.B;

6.A;    7.B;    8.D;    9.B;     10.D;

二.填空题 (本大题共7小题,每题4分,共28分)

11.;  12.;   14.;  15.;  16.;  17.

三.解答题 (本大题共5小题,第18―20题各14分,第21、22题各15分,共72分)

18.解:(1)因为,所以,…………3分

    得

    所以…………………………………3分

(2)由,…………………………………2分

    ……………………2分

    ………………………………4分

19.解:(1)…………………2分

      当时,…………………2分

     ∴,即

    ∴是公比为3的等比数列…………………2分

(2)由(1)得:…………………2分

的公差为), ∵,∴………………2分

依题意有

,得,或(舍去)………………2分

………………2分

 

20.解(1)

由三视图知:侧棱

………………2分

,又,∴   ①………………2分

为正方形,∴,又

 ②………………2分

由①②知平面………………2分

(2)取的中点,连结,由题意知,∴

由三视图知:侧棱,∴平面平面

平面

就是与面所成角的平面角………………3分

。故,又正方形

中,∴,∴

………………3分

综上知与面所成角的大小的余弦值为

21.解(1)当时,,………………1分

………………2分

∴当,此时为减函数,………………1分

,些时为增函数………………1分

时,求函数的最大值………………2分

(2)………………1分

①当时,在

上为减函数,∴,则

………………3分

②当时,

上为减函数,则

上为增函数,在上为减函数,在上为增函数,则

,∴………………3分

综上可知,的取值范围为………………1分

 

22.(1)记A点到准线距离为,直线的倾斜角为

由抛物线的定义知,………………………2分

………………………3分

(2)设

,………………………2分

,同理……………………2分

,…………………………2分

即:

    ∴,…………………………2分

,得

得,

的取值范围为…………………………2分

 

命题人

吕峰波(嘉兴)  王书朝(嘉善)  王云林(平湖)

胡水林(海盐)  顾贯石(海宁)  张晓东(桐乡)

     吴明华、张启源、徐连根、洗顺良、李富强、吴林华

 

 

 


同步练习册答案