(1)求的值, (2)求的值. 查看更多

 

题目列表(包括答案和解析)


x 3 4 5 6
y 2.5 3 4 4.5
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程y=
b
x+
a

(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

求(2x-1)5的展开式中
(1)各项系数之和;
(2)各项的二项式系数之和;
(3)偶数项的二项式系数之和;
(4)各项系数的绝对值之和;
(5)奇次项系数之和.

查看答案和解析>>

求实数x分别取什么值时,复数z=x2+x-6+(x2-2x-15)i对应的点Z在:
(1)第三象限;
(2)直线x-y-3=0.

查看答案和解析>>

求x的取值范围:
(1)tanx≥-1;            
(2)-
3
3
<tanx<
3

查看答案和解析>>

.已知的定义域[-2,2],对任意的∈[-2,2],都有,且对任意的m,n∈[-2,2],m+n≠0,都有.

         (1)用定义证明在[-2,2]上是增函数;

(2)解不等式

(3)若时任意的∈[-2,2]且∈[-2,2]恒成立,求实数t的取值范围.

查看答案和解析>>

一.选择题 (本大题共10小题,每题5分,共50分)

1.C;    2.D;    3,A;    4.B;     5.B;

6.A;    7.B;    8.D;    9.B;     10.D;

二.填空题 (本大题共7小题,每题4分,共28分)

11.;  12.;   14.;  15.;  16.;  17.

三.解答题 (本大题共5小题,第18―20题各14分,第21、22题各15分,共72分)

18.解:(1)因为,所以,…………3分

    得

    所以…………………………………3分

(2)由,…………………………………2分

    ……………………2分

    ………………………………4分

19.解:(1)…………………2分

      当时,…………………2分

     ∴,即

    ∴是公比为3的等比数列…………………2分

(2)由(1)得:…………………2分

的公差为), ∵,∴………………2分

依题意有

,得,或(舍去)………………2分

………………2分

 

20.解(1)

由三视图知:侧棱

………………2分

,又,∴   ①………………2分

为正方形,∴,又

 ②………………2分

由①②知平面………………2分

(2)取的中点,连结,由题意知,∴

由三视图知:侧棱,∴平面平面

平面

就是与面所成角的平面角………………3分

。故,又正方形

中,∴,∴

………………3分

综上知与面所成角的大小的余弦值为

21.解(1)当时,,………………1分

………………2分

∴当,此时为减函数,………………1分

,些时为增函数………………1分

时,求函数的最大值………………2分

(2)………………1分

①当时,在

上为减函数,∴,则

………………3分

②当时,

上为减函数,则

上为增函数,在上为减函数,在上为增函数,则

,∴………………3分

综上可知,的取值范围为………………1分

 

22.(1)记A点到准线距离为,直线的倾斜角为

由抛物线的定义知,………………………2分

………………………3分

(2)设

,………………………2分

,同理……………………2分

,…………………………2分

即:

    ∴,…………………………2分

,得

得,

的取值范围为…………………………2分

 

命题人

吕峰波(嘉兴)  王书朝(嘉善)  王云林(平湖)

胡水林(海盐)  顾贯石(海宁)  张晓东(桐乡)

     吴明华、张启源、徐连根、洗顺良、李富强、吴林华

 

 

 


同步练习册答案