一、选择题(本大题共12个小题,每小题5分,共60分)
1―5 CABDC 6―10
DCCBB 11―12AB
二、填空题:
13.9
14.数学文科.files/image107.gif)
15.(1,0)
16.420
三、解答题:
17.解:(1)数学文科.files/image109.gif)
数学文科.files/image111.gif)
(2)由(1)知,数学文科.files/image113.gif)
数学文科.files/image115.gif)
18.解: 记“第i个人过关”为事件Ai(i=1,2,3),依题意有
。
(1)设“恰好二人过关”为事件B,则有
,
且
彼此互斥。
于是数学文科.files/image123.gif)
=数学文科.files/image125.gif)
(2)设“有人过关”事件G,“无人过关”事件
互相独立,
数学文科.files/image129.gif)
19.解法:1:(1)数学文科.files/image131.gif)
数学文科.files/image133.gif)
(2)过E作EF⊥PC,垂足为F,连结DF。
(8分)
数学文科.files/image135.jpg)
由Rt△EFC∽数学文科.files/image139.gif) 数学文科.files/image141.gif)
数学文科.files/image143.jpg)
解法2:(1)数学文科.files/image149.gif) 数学文科.files/image151.gif)
(2)设平面PCD的法向量为数学文科.files/image153.gif) 则数学文科.files/image155.gif) 解得
数学文科.files/image161.gif) AC的法向量取为数学文科.files/image163.gif) 数学文科.files/image165.gif)
角A―PC―D的大小为数学文科.files/image167.gif) 20.(1)由已知得 数学文科.files/image171.gif) 是以a2为首项,以数学文科.files/image173.gif) (6分) (2)证明:数学文科.files/image177.gif) 数学文科.files/image179.gif) (2)证明:由(1)知,数学文科.files/image181.gif) 数学文科.files/image183.gif)
21.解:(1)数学文科.files/image185.gif) 又直线数学文科.files/image187.gif) 数学文科.files/image189.gif)
(2)由(1)知 ,列表如下: x 数学文科.files/image193.gif)
数学文科.files/image195.gif)
数学文科.files/image197.gif)
数学文科.files/image199.gif)
数学文科.files/image201.gif)
f′ + 0 - 0 + f(x) 数学文科.files/image202.gif)
极大值 数学文科.files/image203.gif)
极小值 数学文科.files/image204.gif)
所以,函数f(x)的单调增区间是 和数学文科.files/image201.gif) 数学文科.files/image206.gif) 22.解:(1)设直线l的方程为数学文科.files/image208.gif) 得 因为直线l与椭圆交点在y轴右侧, 所以 解得2数学文科.files/image214.gif) 故l直线y截距的取值范围为 。
(4分) (2)①(Ⅰ)当AB所在的直线斜率存在且不为零时, 设AB所在直线方程为数学文科.files/image218.gif) 解方程组
得数学文科.files/image222.gif) 所以数学文科.files/image224.gif) 设数学文科.files/image226.gif) 所以数学文科.files/image228.gif) 因为l′是AB的垂直平分线,所以直线l′的方程为数学文科.files/image230.gif) 因此数学文科.files/image232.gif) 又数学文科.files/image234.gif) (Ⅱ)当k=0或不存在时,上式仍然成立。 综上所述,M的轨迹方程为 (λ≠0)。 (9分) ②当k存在且k≠0时,由(1)得数学文科.files/image222.gif) 由 解得数学文科.files/image241.gif) 所以数学文科.files/image243.gif) 数学文科.files/image245.gif)
解法:(1)由于数学文科.files/image247.gif) 数学文科.files/image249.gif)
当且仅当4+5k2=5+4k2,即k≠±1时等号成立, 此时,数学文科.files/image251.gif) 当数学文科.files/image253.gif) 当k不存在时,数学文科.files/image255.gif) 综上所述,
(14分) 解法(2): 因为数学文科.files/image259.gif) 又数学文科.files/image261.gif) 当且仅当4+5k2=5+4k2,即k≠±1时等号成立, 此时 。 当数学文科.files/image263.gif) 当k不存在时,数学文科.files/image265.gif) 综上所述, 。
| | | |