六. 查看更多

 

题目列表(包括答案和解析)

(本题10分)

据我们调查,连云港市“欣欣”家电商场电视柜,今年一月至六月份销售型号为“HH-2188X”的长虹牌电视机的销量如下:

月 份

销量(台)

50

51

48

50

52

49

一、       求上半年销售型号为“HH-2188X”的长虹牌电视机销售量的平均数、中位数、众数;

二、       由于此型号的长虹牌电视机的质量好,消费者满意度很高,商场计划八月份销售此型号的电视机72台,与上半年平均月销售量相比,七、八月销售此型号的电视机平均每月的增长率是多少?

 

 

查看答案和解析>>

(本题满分8分)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对

他们进行了六次测试,测试成绩如下表(单位:环):

 

第一次

第二次

第三次

第四次

第五次

第六次

10

8

9

8

10

9

10

7

10

10

9

8

(1)根据表格中的数据,计算出甲的平均成绩是   环,乙的平均成绩是   环;

(2)分别计算甲、乙六次测试成绩的方差;

(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.

(计算方差的公式:s2])

 

查看答案和解析>>

(本题满分8分)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对

他们进行了六次测试,测试成绩如下表(单位:环):

 

第一次

第二次

第三次

第四次

第五次

第六次

10

8

9

8

10

9

10

7

10

10

9

8

(1)根据表格中的数据,计算出甲的平均成绩是   环,乙的平均成绩是   环;

(2)分别计算甲、乙六次测试成绩的方差;

(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.

(计算方差的公式:s2])

 

查看答案和解析>>

(本题10分)某班实行小组量化考核制.为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:综合评价得分统计表    (单位:分) 

(1)请根据表中的数据完成下表(注:方差的计算结果精确到0.1)

(2)根据综合评价得分统计表中的数据,请在下图中画出乙组综合评价得分的折线统计图.

(3)根据折线统计图中的信息,请你分别对甲、乙两个小组连续六周的学习情况作出简要评价.

 

查看答案和解析>>

(本题10分)某班实行小组量化考核制.为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:综合评价得分统计表    (单位:分) 

(1)请根据表中的数据完成下表(注:方差的计算结果精确到0.1)

(2)根据综合评价得分统计表中的数据,请在下图中画出乙组综合评价得分的折线统计图.

(3)根据折线统计图中的信息,请你分别对甲、乙两个小组连续六周的学习情况作出简要评价.

 

查看答案和解析>>

 

一、1.A  2. C  3. D  4. D  5. B  6.D  7. A  8. A  9. B  10. B  11. D  12. B  13. C  14. D  15. A

二、16.±3  17. 18.  19.矩形、圆  20.2.5┩  21.15π

三、22.解原式=  

23、解设原方程可化为。解得    

  解得    解得 

经检验    是原方程的根。   

24、∵AC∥BD  ∴∠C=∠D   ∠CAO=∠DBO   AO=BO  ∴△AOC≌△BOD 

∴CO=DO  ∵E、F分别是OC、OD的中点  ∴OF=OD=OC=OE 。

由AO=BO、EO=FO ∴四边表AFBE是平等四边形。

25、解由图象可行的反比例函数设经过A(2,18)

∴函数表达式为:=。 

26、(1)设该船厂运输x年后开始盈利,72x-(120+40x)?0,x?

因而该船运输4年后开始盈利。(2)(万元)。 

四、27、(1)不合格  (2)80名 

(3)合理,理由,利用样本的优秀人数来诂计总体的优秀人数。 

五、28、作AD⊥BC交BC延长线于D,设AD=,在Rt△ACD中,∠CAD=30°

∴CD=。在Rt△ABD中,∠ABD=30°∴BD=   

∵BC=8      ∴有触礁危险。 

六29、解:(1)△。证明:

(2)理由:

,即。 

七、30.解(1)等腰直角三角形   (2)当J 等边三角形。

证明;连结是⊙的切线

 

  又  是等边三角形。(3)等腰三角形。 

八 31.(1)作图略   (2)  

九 32.(1)1140≤45x+75(20-x)≤1170 (2)11≤x≤12

∵x为正整数∴当x=11时,20-11=9当=12时20-12=8

∴生产甲产品11件,生产乙产品9件或 生产甲产品12件,生产乙产品8件。

十 33.解:(1)∵DQ//AP,∴当AP=DQ时,四边形APQD是平行四边形。

此时,3t=8-t。解得t=2(s)。即当t为2s时,四边形APQD是平行四边形。

(2)∵⊙P和⊙Q的半径都是2cm,∴当PQ=4cm时,⊙P和⊙Q外切。

而当PQ=4cm时,如果PQ//AD,那么四边形APQD是平行四边形。

①当 四边形APQD是平行四边形时,由(1)得t=2(s)。

② 当 四边形APQD是等腰梯形时,∠A=∠APQ。

∵在等腰梯形ABCD中,∠A=∠B,∴∠APQ=∠B。∴PQ//BC。

∴四边形PBCQ平行四边形 。此时,CQ=PB。∴t=12-3t。解得t3(s)。

综上,当t为2s或3s时,⊙P和⊙Q相切。             

 

 


同步练习册答案