30.如图.是⊙的直径.点是半径的中点.点在线段上运动(不与点重合).点在上半圆上运动.且总保持.过点作⊙的切线交的延长线于点. 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,圆的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是(  )
A、2
3
cm
B、3
3
cm
C、4
3
cm
D、5
3
cm

查看答案和解析>>

精英家教网如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是(  )
A、2
3
cm
B、3
2
cm
C、4
2
cm
D、4
3
cm

查看答案和解析>>

精英家教网如图,⊙O的直径AB垂直弦CD于M,且M是半径OB的中点,CD=8cm,求直径AB的长.

查看答案和解析>>

精英家教网如图,⊙O的直径AB=8,P是上半圆(A、B除外)上任一点,∠APB的平分线交⊙O于C,弦EF过AC、BC的中点M、N,则EF的长是(  )
A、4
3
B、2
3
C、6
D、2
5

查看答案和解析>>

精英家教网如图,⊙O的直径AB与弦CD(不是直径)相交于E,E是CD的中点,过点B作BF∥CD交AD的延长线于
点F.
(1)求证:BF是⊙O的切线;
(2)连接BC,若⊙O的半径为5,∠BCD=38°,求线段BF、BC的长.(精确到0.1)

查看答案和解析>>

 

一、1.A  2. C  3. D  4. D  5. B  6.D  7. A  8. A  9. B  10. B  11. D  12. B  13. C  14. D  15. A

二、16.±3  17. 18.  19.矩形、圆  20.2.5┩  21.15π

三、22.解原式=  

23、解设原方程可化为。解得    

  解得    解得 

经检验    是原方程的根。   

24、∵AC∥BD  ∴∠C=∠D   ∠CAO=∠DBO   AO=BO  ∴△AOC≌△BOD 

∴CO=DO  ∵E、F分别是OC、OD的中点  ∴OF=OD=OC=OE 。

由AO=BO、EO=FO ∴四边表AFBE是平等四边形。

25、解由图象可行的反比例函数设经过A(2,18)

∴函数表达式为:=。 

26、(1)设该船厂运输x年后开始盈利,72x-(120+40x)?0,x?

因而该船运输4年后开始盈利。(2)(万元)。 

四、27、(1)不合格  (2)80名 

(3)合理,理由,利用样本的优秀人数来诂计总体的优秀人数。 

五、28、作AD⊥BC交BC延长线于D,设AD=,在Rt△ACD中,∠CAD=30°

∴CD=。在Rt△ABD中,∠ABD=30°∴BD=   

∵BC=8      ∴有触礁危险。 

六29、解:(1)△。证明:

(2)理由:

,即。 

七、30.解(1)等腰直角三角形   (2)当J 等边三角形。

证明;连结是⊙的切线

 

  又  是等边三角形。(3)等腰三角形。 

八 31.(1)作图略   (2)  

九 32.(1)1140≤45x+75(20-x)≤1170 (2)11≤x≤12

∵x为正整数∴当x=11时,20-11=9当=12时20-12=8

∴生产甲产品11件,生产乙产品9件或 生产甲产品12件,生产乙产品8件。

十 33.解:(1)∵DQ//AP,∴当AP=DQ时,四边形APQD是平行四边形。

此时,3t=8-t。解得t=2(s)。即当t为2s时,四边形APQD是平行四边形。

(2)∵⊙P和⊙Q的半径都是2cm,∴当PQ=4cm时,⊙P和⊙Q外切。

而当PQ=4cm时,如果PQ//AD,那么四边形APQD是平行四边形。

①当 四边形APQD是平行四边形时,由(1)得t=2(s)。

② 当 四边形APQD是等腰梯形时,∠A=∠APQ。

∵在等腰梯形ABCD中,∠A=∠B,∴∠APQ=∠B。∴PQ//BC。

∴四边形PBCQ平行四边形 。此时,CQ=PB。∴t=12-3t。解得t3(s)。

综上,当t为2s或3s时,⊙P和⊙Q相切。             

 

 


同步练习册答案