题目列表(包括答案和解析)
| 已知等边三角形ABC中,点D、E、F分别为AB、AC、BC边的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动) (1) 如图1-1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?请直接写出结论, 不必证明或说明理由; (2) 如图1-2,当点M在BC边上,其它条件不变时,(1)的结论中EN与MF的数量关系是否依然成立?若成立,请利用图1-2证明;若不成立,请说明理由; (3) 若点M在点C右侧时,请你在图1-3中作出相应的图形(不写作法),(1)结论中EN与MF的数量关系是否仍然成立?请直接写出结论,不必证明或说明理由。 | |||
|
|
已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.
![]()
(1)如图1,当点P与点Q重合时,AE与BF的位置关系是 ,QE与QF的数量关系式 ;
(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;
(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.
一、1.A 2. C 3. D 4. D 5. B 6.D 7. A 8. A 9. B 10. B 11. D 12. B 13. C 14. D 15. A
二、16.±3 17.
18.
19.矩形、圆 .files/image086.gif)
三、22.解原式=
23、解设
原方程可化为
。解得
当
解得
解得
经检验
是原方程的根。
24、∵AC∥BD ∴∠C=∠D ∠CAO=∠DBO AO=BO ∴△AOC≌△BOD
∴CO=DO ∵E、F分别是OC、OD的中点 ∴OF=
OD=
OC=OE 。
由AO=BO、EO=FO ∴四边表AFBE是平等四边形。
25、解由图象可行
是
的反比例函数设
经过A(2,18)
∴函数表达式为:
=
。
26、(1)设该船厂运输x年后开始盈利,72x-(120+40x)?0,x?
,
因而该船运输4年后开始盈利。(2)
(万元)。
四、27、(1)不合格 (2)80名
(3)合理,理由,利用样本的优秀人数来诂计总体的优秀人数。
五、28、作AD⊥BC交BC延长线于D,设AD=
,在Rt△ACD中,∠CAD=30°
∴CD=
。在Rt△ABD中,∠ABD=30°∴BD=
∵BC=8
∴有触礁危险。
六29、解:(1)△
。证明:
。
又
(2)
理由:
。
又
∽
,即
。
七、30.解(1)等腰直角三角形 (2)当
J 等边三角形。
证明;连结
是⊙
的切线
.files/image294.gif)
又
是等边三角形。(3)等腰三角形。
八 31.(1)作图略 (2)
九 32.(1)1140≤45x+75(20-x)≤1170 (2)11≤x≤12
∵x为正整数∴当x=11时,20-11=9当=12时20-12=8
∴生产甲产品11件,生产乙产品9件或 生产甲产品12件,生产乙产品8件。
十 33.解:(1)∵DQ//AP,∴当AP=DQ时,四边形APQD是平行四边形。
此时,3t=8-t。解得t=2(s)。即当t为2s时,四边形APQD是平行四边形。
(2)∵⊙P和⊙Q的半径都是
而当PQ=
①当 四边形APQD是平行四边形时,由(1)得t=2(s)。
② 当 四边形APQD是等腰梯形时,∠A=∠APQ。
∵在等腰梯形ABCD中,∠A=∠B,∴∠APQ=∠B。∴PQ//BC。
∴四边形PBCQ平行四边形 。此时,CQ=PB。∴t=12-3t。解得t3(s)。
综上,当t为2s或3s时,⊙P和⊙Q相切。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com