设平面与平面的交线为. 查看更多

 

题目列表(包括答案和解析)

平面内动点M与点P1(-2,0),P2(2,0),所成直线的斜率分别为k1、k2,且满足k1k2=-
1
2

(Ⅰ)求点M的轨迹E的方程,并指出E的曲线类型;
(Ⅱ)设直线:l:y=kx+m(k>0,m≠0)分别交x、y轴于点A、B,交曲线E于点C、D,且|AC|=|BD|.
(1)求k的值;
(2)若点N(
2
,1)
,求△NCD面积取得最大时直线l的方程.

查看答案和解析>>

平面上有n个圆和直线l,任意两个圆都相交,直线l也与这n个圆相交,记所有交点数的最大值为an
(1)求数列{an}的通项公式;
(2)设bn=
1an
Sn=b1b3+b2b4+b3b5+…+bnbn+2
,求最大的正整数K的值,使对任意的n,都有kSn<2005.

查看答案和解析>>

平面直角坐标系中过C(p,0)作直线与抛物线y2=2px(p>0)相交于A、B两点,如图设A(x1,y1)、B(x2,y2
(1)求证y1,y2为定值;
(2)若点D是点C关于坐标原点O的对称点,求△ADB面积的最小值.

查看答案和解析>>

平面内动点M与点P1(-2,0),P2(2,0)所成直线的斜率分别为k1、k2,且满足k1k2=-
1
2

(1)求点M的轨迹E的方程,并指出E的曲线类型;
(2)设直线l:y=kx+m(k>0,m≠0)分别交x、y 轴于点A、B,交曲线E于点C、D,且|AC|=|BD|,N(
2
,1)
求k的值及△NCD面积取得最大时直线l的方程.

查看答案和解析>>

平面直角坐标系中,O为坐标系原点,给定两点A(1,0),B(0,2),点C满足
OC
=α•
OA
+β•
OB
,其中α,β∈R,α-2β=1.
(1)求点C(x,y)的轨迹方程;
(2)设点C的轨迹与双曲线
x2
a2
-
y2
b2
=1
(a,b>0)交于两点M、N,且以MN为直径的圆过原点,求证:
1
a2
-
1
b2
为定值.

查看答案和解析>>


同步练习册答案