题目列表(包括答案和解析)
如图,以O为原点的直角坐标系中,A点的坐标为(0,3),直线x=-3交x轴于点B,P为线段AB上一动点,作直线PC⊥PO,交于直线x=﹣3于点C.过P点作直线MN平行于x轴,交y轴于M,交直线x=-3于点N.
![]()
(1)当点C在第二象限时,求证:△OPM≌△PCN;
(2)设AP长为m,以P、O、B、C为顶点的四边形的面积为S,请求出S与M之间的函数关系式,并写出自变量m的取值范围;
(3)当点P在线段AB上移动时,点C也随之在直线x=-3上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形的点P的坐标,如果不可能,请说明理由.
对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式。但对于二次三项式x2+2ax-3a2,就不能直接运用公式了。此时,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:
x2+2ax-3a2= (x2+2ax+a2)-a2-3a2
=(x+a)2-(2a)2
=(x+3a)(x-a).
像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”。
(1)利用“配方法”分解因式:a2-4a+3;(4分)
(2)若a+b=5,ab=6,求:a2+b2的值。 (3分)
如图,点P(-m,m2)抛物线:y = x2上一点,将抛物线E沿x轴正方向平移2m个单位得到抛物线F,抛物线F的顶点为B,抛物线F交抛物线E于点A,点C是x轴上点B左侧一动点,点D是射线AB上一点,且∠ACD = ∠POM.问△ACD能否为等腰三角形?
若能,求点C的坐标;若不能,请说明理由.
![]()
说明:⑴如果你反复探索,没有解决问题,请写出探索过程(要求至少写3步);⑵在你完成⑴之后,可以从①、②中选取一个条件,完成解答
①m = 1;②m = 2.
附加题:如下图,若将上题“点C是x轴上点B左侧一动点”改为“点C是直线y =-m2上点N左侧一动点”,其他条件不变,探究上题中的问题.
![]()
如图,某市一处十字路口立交桥的截面是由抛物线和两个对称的三角形组成.其中抛物线
可以用y=-
x2+8表示,线段CD和
为两段对称的上桥斜坡,其坡度为1∶4.AD和
是两侧的支柱,OA和
为两个方向的汽车通行区,宽都为15米.
(1)求
的长;
(2)BE和
为支撑斜坡的立柱,其高都为4米,相应的AB和
为两个方向的行人及非机动车通行区,试求AB和
的宽;
(3)按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4米,今有一大型运货汽车,装载某大型设备后,其宽为4米,车载大型设备的顶部与地面的距离均为7米,那么这辆运货汽车能否从OA(或
)区域安全通过?请说明理由.
某旅游胜地欲开发一座景观山.从山的侧面进行勘测,迎面山坡线ABC由同一平面内的两段抛物线组成,其中AB所在的抛物线以A为顶点、开口向下,BC所在的抛物线以C为顶点、开口向上.以过山脚(点C)的水平线为x轴、过山顶(点A)的铅垂线为y轴建立平面直角坐标系如图(单位:百米).已知AB所在抛物线的解析式为y=-
x2+8,BC所在抛物线的解析式为y=
(x-8)2,且已知B(m,4).
(1)设P(x,y)是山坡线AB上任意一点,用y表示x,并求点B的坐标;
(2)从山顶开始、沿迎面山坡往山下铺设观景台阶.这种台阶每级的高度为20 cm,长度因坡度的大小而定,但不得小于20 cm,每级台阶的两端点在坡面上(如上图).
①分别求出前三级台阶的长度(精确到1 cm);
②这种台阶不能一起铺到山脚,为什么?(可取点验证)
(3)在山坡上的700 m高度(点D)处恰好有一小块平地,可以用来建造索道站.索道站的起点选择在山脚水平线上的点E处,OE=1 600(m).假设索道DE可近似地看成一段以E为顶点、开口向上的抛物线,解析式为y=
(x-16)2.试求索道的最大悬空高度.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com