(2)判断抛物线的准线与经过三点的圆的位置关系.并说明理由. 查看更多

 

题目列表(包括答案和解析)

(08年黄冈中学三模理)如图,设抛物线的准线与轴交于,焦点为;以为焦点,离心率的椭圆与抛物线轴上方的一个交点为.

(Ⅰ)当时,求椭圆的方程及其右准线的方程;

(Ⅱ)在(Ⅰ)的条件下,直线经过椭圆的右焦点,与抛物线交于,如果

以线段为直径作圆,试判断点P与圆的位置关系,并说明理由;

(Ⅲ)是否存在实数,使得△的边长是连续的自然数,若存在,求出这样的实数;若不存在,请说明理由.

查看答案和解析>>

设A(x1,x2)、B(x2,y2)是抛物线x2=4y上不同的两点,且该抛物线在点A、B处的两条切线相交于点C,并且满足
(1)求证:x1•x2=-4;
(2)判断抛物线x2=4y的准线与经过A、B、C三点的圆的位置关系,并说明理由.

查看答案和解析>>

设A(x1,x2)、B(x2,y2)是抛物线x2=4y上不同的两点,且该抛物线在点A、B处的两条切线相交于点C,并且满足
AC
BC
=0

(1)求证:x1•x2=-4;
(2)判断抛物线x2=4y的准线与经过A、B、C三点的圆的位置关系,并说明理由.

查看答案和解析>>


同步练习册答案