∵CD∥AB,∴∠BAC=∠ACD.又∵AD=CD.∴∠DAC=∠ACD.∴∠BAC=∠DAC.即CA平分∠BAD.∵△ADE是正三角形.∴AC⊥DE.即PF⊥DE.CF⊥DE.∴DE⊥平面PCF.∴DE⊥PC.(2)过P作PO⊥AC于O.连结OD. 设AD=DC=CB=a,则AB=2a. ∵DE⊥平面PCF.∴DE⊥PO. ∴PO⊥平面BCDE. ∴∠PDO即为直线PD与平面BCDE所成的角. ∵∠PFC是二面角P-DE-C的平面角.∴∠PFO=60° 查看更多

 

题目列表(包括答案和解析)

(2012•包头一模)如图,四边形DCBE为直角梯形,∠DCB=90°,DE∥CB,DE=1,BC=2,又AC=1,∠ACB=120°,CD⊥AB,直线AE与直线CD所成角为60°.
(Ⅰ)求证:平面ACD⊥平面ABC;
(Ⅱ)求BE与平面ACE所成角的正弦值.

查看答案和解析>>

如图,四边形DCBE为直角梯形,∠DCB=90°,DE∥CB,DE=1,BC=2,又AC=1,∠ACB=120°,CD⊥AB,直线AE与直线CD所成角为60°.
(Ⅰ)求证:平面ACD⊥平面ABC;
(Ⅱ)求BE与平面ACE所成角的正弦值.

查看答案和解析>>

如图,四边形DCBE为直角梯形,∠DCB=90°,DE∥CB,DE=1,BC=2,又AC=1,∠ACB=120°,CD⊥AB,直线AE与直线CD所成角为60°.
(Ⅰ)求证:平面ACD⊥平面ABC;
(Ⅱ)求BE与平面ACE所成角的正弦值.

查看答案和解析>>

如图,四边形DCBE为直角梯形,∠DCB=90°,DE∥CB,DE=1,BC=2,又AC=1,∠ACB=120°,CD⊥AB,直线AE与直线CD所成角为60°.
(Ⅰ)求证:平面ACD⊥平面ABC;
(Ⅱ)求BE与平面ACE所成角的正弦值.

查看答案和解析>>

平面α、β交于直线AC,直线AB在平面α内,直线CD在平面β内,∠BAC=∠ACD,那么直线AB、CD的位置关系是


  1. A.
    AB∥CD
  2. B.
    AB与CD异面
  3. C.
    AB与CD相交
  4. D.
    AB∥CD或异面

查看答案和解析>>


同步练习册答案