题目列表(包括答案和解析)
在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角。例如:正方形绕着它的对角线的交点旋转90°后能与自身重合(如图),所以正方形是旋转对称图形,它有一个旋转角为90°。
(1
) 判断下列命题的真假(在相应的括号内填上撜鏀或摷贁)。①等腰梯形是旋转对称图形,它有一个旋转角为180°。( )
② 矩形是旋转对称图形,它有一个旋转角为180°( )
(2
)填空:下列图形中,是旋转对称图形,且有一个旋转角为120°的是 (写出所有正确结论的序号):①正三角形;②正方形;③正六边形;④正八边形 。(3
)写出两个多边形,它们都是旋转对图形,都有一个旋转角为72°,并且分别满足下列条件①是轴对称图形,但不是中心对称图形:
②既是轴对称图形,又是中心对称图形:
个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做
位似中心。利用三角形的位似可以将一个三角形缩小或放大。
(1)选择:如图(1),点O是等边△PQR的中心,P’Q’R’分别是OP、OQ、OR的
中点,则△P’Q’R’与是△PQR是位似三角形,此时,△P’Q’R’与△PQR的位似比,位
似中心分别为 ( )
A. 2,点P B. ,点P C. 2,点O D. ,点O
(2)如图(2),用下面的方法可以画△AOB的内接等边三角形,阅读后证明相应的
问题。画法:①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;②
连结OE并延长,交AB于点E’,过点E’作E’C’//EC,交OA于点C’,作E’D’//ED,
交OB于点D’;③连结C’D’,则△C’D’E’ 查看答案和解析>>
个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做
位似中心。利用三角形的位似可以将一个三角形缩小或放大。
(1)选择:如图(1),点O是等边△PQR的中心,P’Q’R’分别是OP、OQ、OR的
中点,则△P’Q’R’与是△PQR是位似三角形,此时,△P’Q’R’与△PQR的位似比,位
似中心分别为 ( )
A. 2,点P B.
,点P C. 2,点O D.
,点O
![]()
(2)如图(2),用下面的方法可以画△AOB的内接等边三角形,阅读后证明相应的
问题。画法:①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;②
连结OE并延长,交AB于点E’,过点E’作E’C’//EC,交OA于点C’,作E’D’//ED,
交OB于点D’;③连结C’D’,则△C’D’E’是△AOB的内接三角形。
求证:△C’D’E’是等边三角形。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com